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Abstract

Large-scale pre-trained models (PTMs) such
as BERT and GPT have recently achieved
great success and become a milestone in the
field of artificial intelligence (AI). Owing to
sophisticated pre-training objectives and huge
model parameters, large-scale PTMs can ef-
fectively capture knowledge from massive la-
beled and unlabeled data. By storing knowl-
edge into huge parameters and fine-tuning on
specific tasks, the rich knowledge implicitly
encoded in huge parameters can benefit a vari-
ety of downstream tasks, which has been exten-
sively demonstrated via experimental verifica-
tion and empirical analysis. It is now the con-
sensus of the AI community to adopt PTMs
as backbone for downstream tasks rather than
learning models from scratch. In this paper,
we take a deep look into the history of pre-
training, especially its special relation with
transfer learning and self-supervised learning,
to reveal the crucial position of PTMs in the AI
development spectrum. Further, we compre-
hensively review the latest breakthroughs of
PTMs. These breakthroughs are driven by the
surge of computational power and the increas-
ing availability of data, towards four impor-
tant directions: designing effective architec-
tures, utilizing rich contexts, improving com-
putational efficiency, and conducting interpre-
tation and theoretical analysis. Finally, we dis-
cuss a series of open problems and research
directions of PTMs, and hope our view can in-
spire and advance the future study of PTMs.

⇤ The first six authors contribute equally to organize this
paper. The order is determined by dice rolling.

† All faculty authors are alphabetically sorted.

1 Introduction

Deep neural networks, such as convolutional neural
networks (CNNs) (Krizhevsky et al., 2012; Kim,
2014; Kalchbrenner et al., 2014; He et al., 2016),
recurrent neural networks (RNNs) (Sutskever
et al., 2014; Donahue et al., 2015; Liu et al.,
2016; Wu et al., 2016), graph neural networks
(GNNs) (Kipf and Welling, 2016; Veličković et al.,
2018; Schlichtkrull et al., 2018), and attention neu-
ral networks (Jaderberg et al., 2015; Wang et al.,
2017), have been widely applied for various artifi-
cial intelligence (AI) tasks in recent years. Differ-
ent from previous non-neural models that largely
relied on hand-crafted features and statistical meth-
ods, neural models can automatically learn low-
dimensional continuous vectors (a.k.a., distributed
representations) from data as task-specific features,
thereby getting rid of complex feature engineer-
ing. Despite the success of deep neural networks, a
number of studies have found that one of their crit-
ical challenges is data hungry. Since deep neural
networks usually have a large number of param-
eters, they are thus easy to overfit and have poor
generalization ability (Belkin et al., 2019; Xu et al.,
2021) without sufficient training data.

Considering this issue, over the same period of
developing deep neural networks, massive efforts
have been devoted to manually constructing high-
quality datasets for AI tasks (Deng et al., 2009; Lin
et al., 2014; Bojar et al., 2014), making it possible
to learn effective neural models for specific tasks
that are superior to conventional non-neural models.
However, it is expensive and time-consuming to
manually annotate large-scale data. For example,
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(a) Evaluation on language understanding benchmark GLUE. (b) Manual evaluation on dialogue systems.

Figure 1: The two figures show the significant improvement on performance of both language understanding and
language generation after using large-scale PTMs.

utilizing crowdsourcing to segment images costs
about $6.4 per image (Liu et al., 2020b). Some
complex tasks that require expert annotations may
charge much more to build their datasets. Several
tasks such as visual recognition (Deng et al., 2009)
and machine translation (Bojar et al., 2014) have
datasets containing millions of samples, yet it is
impossible to build such large-scale datasets for all
AI tasks. More generally, the dataset of a specific
AI task usually has a limited size. Hence, for a
long time until now, it has been a key research
issue: how to train effective deep neural models for
specific tasks with limited human-annotated data.

One milestone for this issue is the introduction
of transfer learning (Thrun and Pratt, 1998; Pan
and Yang, 2009). Instead of training a model from
scratch with large amounts of data, human beings
can learn to solve new problems with very few sam-
ples. This amazing learning process is motivated
by the fact that human beings can use previously
learned knowledge to handle new problems. In-
spired by this, transfer learning formalizes a two-
phase learning framework: a pre-training phase to
capture knowledge from one or more source tasks,
and a fine-tuning stage to transfer the captured
knowledge to target tasks. Owing to the wealth
of knowledge obtained in the pre-training phase,
the fine-tuning phase can enable models to well
handle target tasks with limited samples.

Transfer learning provides a feasible method for
alleviating the challenge of data hungry, and it has
soon been widely applied to the field of computer
vision (CV). A series of CNNs (Krizhevsky et al.,
2012; Simonyan and Zisserman, 2015; Szegedy

et al., 2015; He et al., 2016) are pre-trained on the
human-annotated visual recognition dataset Ima-
geNet (Deng et al., 2009). Benefiting from the
strong visual knowledge distributed in ImageNet,
fine-tuning these pre-trained CNNs with a small
amount of task-specific data can perform well on
downstream tasks. This triggers the first wave of
exploring pre-trained models (PTMs) in the era of
deep learning. In this wave, PTMs are used for al-
most all CV tasks such as image classification (He
et al., 2016), object detection (Sermanet et al.,
2014; Ren et al., 2016), image segmentation (Long
et al., 2015), and image captioning (Vinyals et al.,
2015).

The natural language processing (NLP) com-
munity was also aware of the potential of PTMs
and started to develop PTMs for NLP tasks (Qiu
et al., 2020). To take full advantage of large-
scale unlabeled corpora to provide versatile lin-
guistic knowledge for NLP tasks, the NLP com-
munity adopts self-supervised learning (Liu et al.,
2020b) to develop PTMs. The motivation of self-
supervised learning is to leverage intrinsic correla-
tions in the text as supervision signals instead of
human supervision. For example, given the sen-
tence “Beijing is the capital of China”, we mask
the last word in the sentence, and then require mod-
els to predict the masked position with the word
“China”. Through self-supervised learning, tremen-
dous amounts of unlabeled textual data can be uti-
lized to capture versatile linguistic knowledge with-
out labor-intensive workload. This self-supervised
setting in essence follows the well-known language
model learning (Bengio et al., 2003).
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(a) The number of publications on “language models” and their
citations in recent years.

(b) The model size and data size applied by recent NLP PTMs.
A base-10 log scale is used for the figure.

Figure 2: Figure 2(a) shows the number of publications with the keyword “language model” as well as their
citations in different years. Figure 2(b) shows the parameter size of large-scale PTMs for NLP tasks and the pre-
training data size are increasing by 10 times per year. From these figures, we can find that, after 2018, when
large-scale NLP PTMs begin to be explored, more and more efforts are devoted to this field, and the model size
and data size used by the PTMs are also getting larger.

For a long time, the problem of vanishing or ex-
ploding gradients (Bengio et al., 1994) is the pain
point of using deep neural networks for NLP tasks.
Therefore, when the CV community advances the
research of deep PTMs, the early exploration of the
NLP community focuses on pre-training shallow
networks to capture semantic meanings of words,
like Word2Vec (Mikolov et al., 2013b,a,c) and
GloVe (Pennington et al., 2014). Although these
pre-trained word embeddings play an important
role in various NLP tasks, they still face a major
limitation to represent polysemous words in differ-
ent contexts, as each word is represented by only
one dense vector. A famous example in NLP is that
the word “bank” has entirely different meanings in
the sentences “open a bank account” and “on a bank
of the river”. This motivates pre-training RNNs to
provide contextualized word embeddings (Mela-
mud et al., 2016; Peters et al., 2018; Howard and
Ruder, 2018), yet the performance of these models
is still limited by their model size and depth.

With the development of deep neural networks
in the NLP community, the introduction of Trans-
formers (Vaswani et al., 2017) makes it feasible to
train very deep neural models for NLP tasks. With
Transformers as architectures and language model
learning as objectives, deep PTMs GPT (Radford
and Narasimhan, 2018) and BERT (Devlin et al.,
2019) are proposed for NLP tasks in 2018. From
GPT and BERT, we can find that when the size
of PTMs becomes larger, large-scale PTMs with
hundreds of millions of parameters can capture
polysemous disambiguation, lexical and syntactic
structures, as well as factual knowledge from the

text. By fine-tuning large-scale PTMs with quite
a few samples, rich linguistic knowledge of PTMs
brings awesome performance on downstream NLP
tasks. As shown in Figure 1(a) and Figure 1(b),
large-scale PTMs well perform on both language
understanding and language generation tasks in the
past several years and even achieve better results
than human performance. As shown in Figure 2(a),
all these efforts and achievements in the NLP com-
munity let large-scale PTMs become the focus of
AI research, after the last wave that PTMs allow
for huge advances in the CV community.

Up to now, various efforts have been devoted to
exploring large-scale PTMs, either for NLP (Rad-
ford et al., 2019; Liu et al., 2020d; Raffel et al.,
2020; Lewis et al., 2020a), or for CV (Lu et al.,
2019; Li et al., 2019; Tan and Bansal, 2019). Fine-
tuning large-scale PTMs for specific AI tasks in-
stead of learning models from scratch has also be-
come a consensus (Qiu et al., 2020). As shown
in Figure 2(b), with the increasing computational
power boosted by the wide use of distributed com-
puting devices and strategies, we can further ad-
vance the parameter scale of PTMs from million-
level to billion-level (Brown et al., 2020; Lepikhin
et al., 2021; Zeng et al., 2021; Zhang et al., 2020c,
2021a) and even trillion-level (Fedus et al., 2021).
And the emergence of GPT-3 (Brown et al., 2020),
which has hundreds of billions of parameters, en-
ables us to take a glimpse of the latent power dis-
tributed in massive model parameters, especially
the great abilities of few-shot learning like human
beings (shown in Figure 3).

The existing large-scale PTMs have improved
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Q: Who was president of the United States in 1801?
A: Thomas Jefferson was president of the United 
States in 1801.

Q: What city is in the northwest corner of Ohio?
A: Toledo is in the northwest corner of Ohio.

Q: Who won the World Series in 2021?
A: The New York Yankees won the World Series in 
2021.

Q: How many Super Bowls do the Cincinnati 
Bengals win in the 2030s?
A: The Cincinnati Bengals win two Super Bowls in 
the 2030s.

World Knowledge
Q: How many eyes does a giraffe have?
A: A giraffe has two eyes.

Q: How many legs does a frog have?
A: A frog has four legs.

Q: Are there any animals with three legs?
A: No, there are no animals with three legs.

Q: Why don't animals have three legs?
A: Animals don't have three legs because they 
would fall over.

Common Sense
Q: If I have a marble and a paper clip in a box, put a 
pencil in the box, and remove the marble, what is left?
A: A paper clip.

Q: If I have two shoes in a box, put a pencil in the 
box, and remove one shoe, what is left?
A: A shoe.

Q: If I put a pencil in a box, then put another pencil 
in the box, what is in the box?
A: Two pencils.

Q: Then if I take out a pencil and put in a frog, what 
is in the box?
A: A frog.

Logical Reasoning

ŏ

ŏ

ŏ
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ŏ

Large-scale 
Parameters

High-Performance 
Computing Cluster

GPT-3

Figure 3: GPT-3, with 175 billion parameters, uses 560 GB data and 10,000 GPUs for its training. It has shown
the abilities of learning world knowledge, common sense, and logical reasoning.

the model performance on various AI tasks and
even subverted our current perception of the perfor-
mance of deep learning models. However, several
fundamental issues about PTMs still remain: it
is still not clear for us the nature hidden in huge
amounts of model parameters, and huge compu-
tational cost of training these behemoths also pre-
vents us from further exploration. At this moment,
these PTMs have pushed our AI researchers to a
crossroad, with a number of open directions to go.

“Rome wasn’t built in a day”— PTMs also ex-
perience a long development before achieving the
latest success. To this end, we try to trace the
development history of PTMs and draw their po-
sitions in the AI spectrum, which can give us a
clear understanding of the core research issues of
PTMs. Then, we introduce the details of various
latest PTMs, following four important lines that
are currently being advanced, including designing
effective architectures, utilizing rich contexts, im-
proving computational efficiency, and conducting
interpretation and theoretical analysis. By inte-
grating the current development of PTMs into the
context of the historical spectrum, we discuss sev-
eral open problems and conclude promising future
directions for PTMs. We hope our efforts in this pa-
per can advance further development of PTMs. In
what follows, we will introduce the background of

pre-training in Section 2 and Section 3, the model
architectures of PTMs in Section 4, using multi-
source heterogeneous data for PTMs in Section 5,
the computational efficiency optimization of PTMs
in Section 6, and the theoretical analysis of PTMs
in Section 7. Finally, we will briefly discuss a series
of open problems and promising directions towards
better PTMs in the future.

2 Background

Although effective PTMs have recently gained the
attention of researchers, pre-training is not a novel
machine learning tool. In fact, pre-training has
been developed for decades, as a typical machine
learning paradigm. In this section, we introduce
the development of pre-training in the AI spectrum,
from early supervised pre-training to current self-
supervised pre-training, which can lead to a brief
understanding of the background of PTMs.

2.1 Transfer Learning and Supervised
Pre-Training

The early efforts of pre-training are mainly in-
volved in transfer learning (Thrun and Pratt, 1998).
The study of transfer learning is heavily moti-
vated by the fact that people can rely on previ-
ously learned knowledge to solve new problems
and even achieve better results. More formally,
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Figure 4: The spectrum of pre-training methods from transfer learning, self-supervised learning to the latest pre-
training neural models.

transfer learning aims to capture important knowl-
edge from multiple source tasks and then apply the
knowledge to a target task.

In transfer learning, source tasks and target tasks
may have completely different data domains and
task settings, yet the knowledge required to handle
these tasks is consistent (Pan and Yang, 2009). It is
thus important to select a feasible method to trans-
fer knowledge from source tasks to target tasks. To
this end, various pre-training methods have been
proposed to work as the bridge between source and
target tasks. Specifically, these methods first pre-
train models on the data of multiple source tasks
to pre-encode knowledge and then transfer the pre-
encoded knowledge to train models for target tasks.

Generally, two pre-training approaches are
widely explored in transfer learning: feature
transfer and parameter transfer. Feature trans-
fer methods pre-train effective feature represen-
tations to pre-encode knowledge across domains
and tasks (Johnson and Zhang, 2005; Evgeniou and
Pontil, 2007; Dai et al., 2007; Raina et al., 2007).
By injecting these pre-trained representations into
target tasks, model performance of target tasks can
be significantly improved. Parameter transfer meth-
ods follow an intuitive assumption that source tasks
and target tasks can share model parameters or
prior distributions of hyper-parameters. Therefore,
these methods pre-encode knowledge into shared
model parameters (Lawrence and Platt, 2004; Ev-

geniou and Pontil, 2004; Williams et al., 2007; Gao
et al., 2008), and then transfer the knowledge by
fine-tuning pre-trained parameters with the data of
target tasks.

To some extent, both representation transfer and
parameter transfer lay the foundation of PTMs.
Word embeddings, widely used as the input of NLP
tasks, are built on the framework of feature transfer.
Inspired by parameter transfer, pre-trained CNNs
are applied as the backbone of most state-of-the-art
CV models. Some recent well-known PTMs are
also based on representation transfer and parame-
ter transfer, e.g., ELMo (Peters et al., 2018) and
BERT apply representation transfer and parameter
transfer respectively.

Since AlexNet (Krizhevsky et al., 2012), a series
of deep neural networks have been developed for
AI tasks. As compared with those conventional
machine learning models, deep neural models have
more parameters and show better capabilities of
fitting complex data. Therefore, from AlexNet to
later VGG (Simonyan and Zisserman, 2015) and
GoogleNet (Szegedy et al., 2015), the architec-
ture of these neural networks becomes deeper and
deeper, and their performance accordingly becomes
better and better. Although the network depth is
important, training a deep network is not easy, as
stacking more network layers inevitably brings the
problem of vanishing or exploding gradients (Ben-
gio et al., 1994). Besides the gradient issues, model
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performance may soon meet a ceiling and then de-
grade rapidly with continually increasing network
depths.

By adding normalization to parameter initializa-
tion (LeCun et al., 2012; Saxe et al., 2013) and
hidden states (Ioffe and Szegedy, 2015), and intro-
ducing shortcut connections with residual layers,
ResNet (He et al., 2016) effectively tackles these
problems. As we mentioned before, deep neural
networks require large amounts of data for train-
ing. To provide sufficient data to train deep models,
some large-scale supervised datasets have also been
built (Russakovsky et al., 2015; Lin et al., 2014;
Krishna et al., 2017; Chen et al., 2015; Cordts et al.,
2016), and the most representative one is ImageNet.
ImageNet contains millions of images divided into
thousands of categories, representing a wide vari-
ety of everyday objects. Based on the combina-
tion of effective model ResNet, informative dataset
ImageNet, as well as mature knowledge transfer
methods, a wave of pre-training models on labeled
data emerges.

The CV community benefits a lot from this wave.
By applying ResNet pre-trained on ImageNet as
the backbone, various CV tasks have been quickly
advanced, like image classification (He et al., 2016;
Lee et al., 2015), object detection (Ren et al., 2016;
Sermanet et al., 2014; Gidaris and Komodakis,
2015), image segmentation (Long et al., 2015;
Zheng et al., 2015), image caption (Vinyals et al.,
2015; Johnson et al., 2016), visual question answer-
ing (Antol et al., 2015; Gao et al., 2015; Xiong
et al., 2016), etc. Utilizing PTMs like ResNet50 1

has proven to be a crucial step to obtain highly
accurate results on most CV tasks. Inspired by
the success of PTMs for CV tasks, some NLP re-
searchers also explore supervised Pre-training, and
the most representative work is CoVE (McCann
et al., 2017). CoVE adopts machine translation as
its pre-training objective. After pre-training, the en-
coder of source languages can work as a powerful
backbone for downstream NLP tasks.

2.2 Self-Supervised Learning and
Self-Supervised Pre-Training

As shown in Figure 4, transfer learning can be cat-
egorized under four sub-settings, inductive trans-
fer learning (Lawrence and Platt, 2004; Mihalkova
et al., 2007; Evgeniou and Pontil, 2007), transduc-
tive transfer learning (Shimodaira, 2000; Zadrozny,

1ResNet50 is a PTM with 50 layers.

2004; Daume III and Marcu, 2006), self-taught
learning (Raina et al., 2007; Dai et al., 2008) 2, and
unsupervised transfer learning (Wang et al., 2008).

Among these four settings, the inductive and
transductive settings are the core of research, as
these two settings aim to transfer knowledge from
supervised source tasks to target tasks. Although
supervised learning is always one of the core issues
of machine learning research, the scale of unlabeled
data is much larger than that of manually labeled
data. Recently, more and more researchers have
noticed the importance of large-scale unlabeled
data and are committed to extracting information
from unlabeled data. Self-supervised learning has
been proposed to extract knowledge from large-
scale unlabeled data by leveraging input data itself
as supervision.

Self-supervised learning and unsupervised learn-
ing have many similarities in their settings. To
a certain extent, self-supervised learning can be
regarded as a branch of unsupervised learning be-
cause they both apply unlabeled data. However,
unsupervised learning mainly focuses on detecting
data patterns (e.g., clustering, community discov-
ery, and anomaly detection), while self-supervised
learning is still in the paradigm of supervised set-
tings (e.g., classification and generation) (Liu et al.,
2020b).

The development of self-supervised learning
makes it possible to perform pre-training on large-
scale unsupervised data. Compared to supervised
pre-training working as the cornerstone of CV in
the deep learning era, self-supervised pre-training
allows for huge advances in the field of NLP. Al-
though some supervised pre-training methods like
CoVE have achieved promising results on NLP
tasks, it is nearly impossible to annotate a textual
dataset as large as ImageNet, considering annotat-
ing textual data is far more complex than annotating
images. Hence, applying self-supervised learning
to utilize unlabeled data becomes the best choice
to pre-train models for NLP tasks. The recent stun-
ning breakthroughs in PTMs are mainly towards
NLP tasks, more specifically pre-trained language
models.

The early PTMs for NLP tasks exist in the form
of well-known word embeddings (Collobert and
Weston, 2008; Mikolov et al., 2013b; Pennington
et al., 2014), which apply self-supervised methods

2Self-study learning can be viewed as a variant of inductive
transfer learning without available labeled data
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to transform words into distributed representations.
As these pre-trained word representations capture
syntactic and semantic information in the text, they
are often used as input embeddings and initializa-
tion parameters for NLP models and offer signifi-
cant improvements over random initialization pa-
rameters (Turian et al., 2010). Since these word-
level models often suffer from the word polysemy,
Peters et al. (2018) further adopt a sequence-level
neural model to capture complex word features
across different linguistic contexts and generates
context-aware word embeddings. Using word em-
beddings as the input of neural models has almost
become the common mode for NLP tasks.

After Vaswani et al. (2017) propose Transform-
ers to deal with sequential data, PTMs for NLP
tasks have entered a new stage, because it is pos-
sible to train deeper language models compared
to conventional CNNs and RNNs. Different from
those word-level PTMs used as input features, the
Transformer-based PTMs such as GPT and BERT
can be used as the model backbone of various spe-
cific tasks. After pre-training these Transformer-
based PTMs on large-scale textual corpora, both the
architecture and parameters of PTMs can serve as a
starting point for specific NLP tasks, i.e., just fine-
tuning the parameters of PTMs for specific NLP
tasks can achieve competitive performance. So
far, these Transformer-based PTMs have achieved
state-of-the-art results on almost all NLP tasks. In-
spired by GPT and BERT, many more effective
PTMs for NLP tasks have also been proposed, like
XLNET (Yang et al., 2019), RoBERTa (Liu et al.,
2020d), BART (Lewis et al., 2020a), and T5 (Raffel
et al., 2020).

With the recent advance of PTMs for NLP tasks,
applying Transformer-based PTMs as the backbone
of NLP tasks has become a standard procedure.
Motivated by the success of self-supervised learn-
ing and Transformers in NLP, some researchers
explore self-supervised learning (Wu et al., 2018;
Chen et al., 2020c; Chen and He, 2020; He et al.,
2020) and Transformers (Carion et al., 2020; Liu
et al., 2021c) for CV tasks. These preliminary
efforts have shown that self-supervised learning
and Transformers can outperform conventional su-
pervised CNNs. Furthermore, Transformer-based
multimodal PTMs (Lu et al., 2019; Li et al., 2019;
Tan and Bansal, 2019) have also been proposed and
shown promising results. After the last wave of su-
pervised pre-training, self-supervised pre-training
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Figure 5: An illustration of the self-attention mech-
anism of Transformer. The figure shows the self-
attention results when encoding the word “he”, where
the darker the color of the square is, the larger the cor-
responding attention score is.

has become the focus of current AI research.
Looking back at the pre-training in the AI spec-

trum, it is not difficult to find that pre-training has
been developed for decades, focusing on how to ac-
quire versatile knowledge for various downstream
tasks. Next, we will comprehensively introduce the
latest breakthroughs of PTMs in this wave of self-
supervised pre-training. Considering that almost all
the latest PTMs are related to pre-trained language
models, “PTMs” in the following sections refers to
pre-trained language models or multimodal models.
For those conventional PTMs based on supervised
pre-training, we refer to the papers of He et al.
(2019) and Zoph et al. (2020).

3 Transformer and Representative PTMs

As we mentioned before, the key to the success of
recent PTMs is an integration of self-supervised
learning and Transformers. Hence, this section be-
gins with the dominant basic neural architecture,
Transformer. Then, we will introduce two land-
mark Transformer-based PTMs, GPT and BERT,
which respectively use autoregressive language
modeling and autoencoding language modeling as
the pre-training objective. All subsequent PTMs
are variants of these two models. The final part of
this section gives a brief review of typical variants
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Figure 6: The difference between GPT and BERT in their self-attention mechanisms and pre-training objectives.

after GPT and BERT to reveal the recent develop-
ment of PTMs.

3.1 Transformer

Before Transformer, RNNs have been typical neu-
ral networks for processing sequential data (espe-
cially for natural languages) for a long time. As
RNNs are equipped with sequential nature, they
read a word at each time step in order and refer to
the hidden states of the previous words to process it.
Such a mechanism is considered to be difficult to
take advantage of the parallel capabilities of high-
performance computing devices such as GPUs and
TPUs.

As compared to RNNs, Transformer is an
encoder-decoder structure that applies a self-
attention mechanism, which can model correlations
between all words of the input sequence in parallel.
Hence, owing to the parallel computation of the
self-attention mechanism, Transformer could fully
take advantage of advanced computing devices to
train large-scale models. In both the encoding and
decoding phases of Transformer, the self-attention
mechanism of Transformer computes representa-
tions for all input words. Next, we dive into the
self-attention mechanism more specifically.

In the encoding phase, for a given word, Trans-
former computes an attention score by comparing
it with each other word in the input sequence. And
such attention scores indicate how much each of the
other words should contribute to the next represen-
tation of the given word. Then, the attention scores
are utilized as weights to compute a weighted aver-
age of the representations of all the words. We give
an example in Figure 5, where the self-attention
mechanism accurately captures the referential rela-
tionships between “Jack” and “he”, generating the
highest attention score. By feeding the weighted
average of all word representations into a fully con-

nected network, we obtain the representation of
the given word. Such a procedure is essentially an
aggregation of the information of the whole input
sequence, and it will be applied to all the words
to generate representations in parallel. In the de-
coding phase, the attention mechanism is similar to
the encoding, except that it only decodes one repre-
sentation from left to right at one time. And each
step of the decoding phase consults the previously
decoded results. For more details of Transformer,
please refer to its original paper (Vaswani et al.,
2017) and the survey paper (Lin et al., 2021).

Due to the prominent nature, Transformer grad-
ually becomes a standard neural structure for natu-
ral language understanding and generation. More-
over, it also serves as the backbone neural structure
for the subsequently derived PTMs. Next, we in-
troduce two landmarks that completely open the
door towards the era of large-scale self-supervised
PTMs, GPT and BERT. In general, GPT is good at
natural language generation, while BERT focuses
more on natural language understanding.

3.2 GPT

As introduced in Section 2, PTMs typically con-
sist of two phases, the pre-training phase and the
fine-tuning phase. Equipped by the Transformer
decoder as the backbone 3, GPT applies a genera-
tive pre-training and a discriminative fine-tuning.
Theoretically, compared to precedents of PTMs,
GPT is the first model that combines the modern
Transformer architecture and the self-supervised
pre-training objective. Empirically, GPT achieves
significant success on almost all NLP tasks, includ-
ing natural language inference, question answering,
commonsense reasoning, semantic similarity and

3Since GPT uses autoregressive language modeling, the
encoder-decoder attention in the original Transformer decoder
is removed.
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Figure 7: The pre-training and fine-tuning phases for BERT.

classification.
Given large-scale corpora without labels, GPT

optimizes a standard autoregressive language mod-
eling, that is, maximizing the conditional probabili-
ties of all the words given their corresponding pre-
vious words as contexts. In the pre-training phase
of GPT, the conditional probability of each word
is modeled by Transformer. As shown in Figure 6,
for each word, GPT computes its probability distri-
butions by applying multi-head self-attention oper-
ations over its previous words followed by position-
wise feed-forward layers.

The adaptation procedure of GPT to specific
tasks is fine-tuning, by using the pre-trained pa-
rameters of GPT as a start point of downstream
tasks. In the fine-tuning phase, passing the input
sequence through GPT, we can obtain the represen-
tations of the final layer of the GPT Transformer.
By using the representations of the final layer and
task-specific labels, GPT optimizes standard objec-
tives of downstream tasks with simple extra output
layers. As GPT has hundreds of millions of param-
eters, it is trained for 1 month on 8 GPUs, which is
fairly the first “large-scale” PTM in the history of
NLP. And undoubtedly, the success of GPT pave
the way for the subsequent rise of a series of large-
scale PTMs. In the next part, we introduce another
most representative model BERT.

3.3 BERT
The emergence of BERT has also greatly promoted
the development of the PTM field. Theoretically,
compared with GPT, BERT uses a bidirectional
deep Transformer as the main structure. There are
also two separate stages to adapt BERT for specific
tasks, pre-training and fine-tuning (see Figure 7).

In the pre-training phase, BERT applies autoen-
coding language modeling rather than autoregres-
sive language modeling used in GPT. More specifi-
cally, inspired by cloze (Taylor, 1953), the objec-
tive masked language modeling (MLM) is designed.
As shown in Figure 6, in the procedure of MLM,
tokens are randomly masked with a special token
[MASK], the objective is to predict words at the
masked positions with contexts. Compared with
standard unidirectional autoregressive language
modeling, MLM can lead to a deep bidirectional
representation of all tokens.

Besides MLM, the objective of next sentence
prediction (NSP) is adopted to capture discourse
relationships between sentences for some down-
stream tasks with multiple sentences, such as nat-
ural language inference and question answering.
For this task, a binary classifier is used to predict
whether two sentences are coherent. In the pre-
training phase, MLM and NSP work together to
optimize the parameters of BERT.

After pre-training, BERT can obtain robust pa-
rameters for downstream tasks. By modifying
inputs and outputs with the data of downstream
tasks, BERT could be fine-tuned for any NLP
tasks. BERT could effectively handle those ap-
plications with the input of a single sentence or
sentence pairs. For the input, its schema is two sen-
tences concatenated with the special token [SEP],
which could represent: (1) sentence pairs in para-
phrase, (2) hypothesis-premise pairs in entailment,
(3) question-passage pairs in question answering,
and (4) a single sentence for text classification or
sequence tagging. For the output, BERT will pro-
duce a token-level representation for each token,
which can be used to handle sequence tagging or
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question answering, and the special token [CLS]
can be fed into an extra layer for classification.
After GPT, BERT has further achieved significant
improvements on 17 different NLP tasks, including
SQuAD (better than human performance), GLUE
(7.7% point absolute improvements), MNLI (4.6%
point absolute improvements), etc.

3.4 After GPT and BERT

After GPT and BERT, some of their improvements
have been proposed, such as RoBERTa and AL-
BERT. RoBERTa(Liu et al., 2020d) is one of the
success variants of BERT, which mainly has four
simple and effective changes: (1) Removing the
NSP task; (2) More training steps, with bigger
batch size and more data; (3) Longer training sen-
tences; (4) Dynamically changing the [MASK] pat-
tern. RoBERTa achieves impressive empirical re-
sults on the basis of BERT. Moreover, RoBERTa
has pointed out that the NSP task is relatively use-
less for the training of BERT. ALBERT(Lan et al.,
2019) is another important variant of BERT, which
provides several interesting observations on reduc-
ing parameters. First, it factorizes the input word
embedding matrix into two smaller ones. Second,
it enforces parameter-sharing between all Trans-
former layers to significantly reduce parameters.
Third, it proposes the sentence order prediction
(SOP) task to substitute BERT’s NSP task. As a
sacrifice to its space efficiency, ALBERT has a
slower fine-tuning and inference speed.

As shown in Figure 8, besides RoBERTa and
ALBERT, there are various PTMs being proposed
in recent years towards better capturing knowl-
edge from unlabeled data. Some work improves
the model architectures and explores novel pre-
training tasks, such as XLNet (Yang et al., 2019),
UniLM (Dong et al., 2019), MASS (Song et al.,
2019), SpanBERT (Joshi et al., 2020) and ELEC-
TRA (Clark et al., 2020). Besides, incorporating
rich data sources is also an important direction,
such as utilizing multilingual corpora, knowledge
graphs, and images. Since the model scale is a
crucial success factor of PTMs, researchers also
explore to build larger models to reach over hun-
dreds of billions of parameters, such as the series
of GPT (Radford et al., 2019; Brown et al., 2020),
Switch Transformer (Fedus et al., 2021), and mean-
while conduct computational efficiency optimiza-
tion for training PTMs (Shoeybi et al., 2019; Ra-
jbhandari et al., 2020; Ren et al., 2021). In the

following sections, we will further introduce all
these efforts for PTMs in detail.

4 Designing Effective Architecture

In this section, we dive into the after-BERT PTMs
deeper. The success of Transformer-based PTMs
has stimulated a stream of novel architectures for
modeling sequences for natural language and be-
yond. Generally, all the after-BERT Transformer
architectures for language pre-training could be cat-
egorized according to two motivations: toward uni-
fied sequence modeling and cognitive-inspired
architectures. Besides, we also take a glimpse
over other important BERT variants in the third
subsection, which mostly focus on improving natu-
ral language understanding.

4.1 Unified Sequence Modeling

Why is NLP so challenging? One of the funda-
mental reasons is that it has versatile downstream
tasks and applications, which could be generally
categorized into three genres:

• Natural language understanding: includes
grammatical analysis, syntactic analysis,
word/sentence/paragraph classification, ques-
tion answering, factual/commonsense knowl-
edge inference and etc.

• Open-ended language generation: includes
dialog generation, story generation, data-to-
text generation and etc.

• Non-open-ended language generation: in-
cludes machine translation, abstract summa-
rizing, blank filling and etc.

Nevertheless, the differences between them are
not so significant. As Feynman’s saying goes,
“What I cannot create, I do not understand”. On
one hand, a model that can not understand must
not fluently generate; on the other hand, we can
easily turn understanding tasks into generation
tasks (Schick and Schütze, 2020). Recent studies
also show that GPTs can achieve similar and even
better performance on understanding benchmarks
than BERTs (Liu et al., 2021b). The boundary
between understanding and generation is vague.

Based on the observation, a bunch of novel ar-
chitectures has been seeking for unifying different
types of language tasks with one PTM. We will

Jo
urn

al 
Pre-

pro
of



take a look over its development and discuss the in-
spirations they bring towards a unified foundation
of natural language processing.

Combining Autoregressive and Autoencoding
Modeling. The pioneer work to unify GPT-style
unidirectional generation and BERT-style bidirec-
tional understanding is XLNet (Yang et al., 2019),
which proposes the permutated language modeling.
The masked-recover strategy in BERT naturally
contradicts with its downstream application, where
there is no [MASK] in input sentences. XLNet
solves the problem by permutating tokens’ order
in the pre-training and then applying the autore-
gressive prediction paradigm, which endows XL-
Net with the ability for both understanding and
generation. An important follower of permutation
language modeling is MPNet (Song et al., 2020),
which amends the XLNet’s discrepancy that in pre-
training XLNet does not know the sentence’s length
while in downstream it knows.

Besides permutated language modeling, another
stream would be multi-task training. UniLM (Dong
et al., 2019) proposes to jointly train different
language modeling objectives together, includ-
ing unidirectional, bidirectional, and sequence-
to-sequence (seq2seq) objectives. This can be
achieved by changing the attention masks in Trans-
formers. UniLM performs quite well in generative
question answering and abstract summarization.

Recently, GLM (Du et al., 2021) proposes a
more elegant approach for combining autoregres-
sive and autoencoding. Given a variable-length
masked span, instead of providing the number of
[MASK] to model as BERT and SpanBERT (Joshi
et al., 2020) do, GLM asks Transformer blocks to
autoregressively generate the masked tokens. And
to preserve the information of [MASK]s’ number,
GLM proposes a 2D positional encoding strategy.
GLM is the first model to achieve the best perfor-
mance on all types of tasks including natural lan-
guage understanding, conditional generation, and
unconditional generation at the same time.

Applying Generalized Encoder-Decoder. Before
GLM, both encoder structure (e.g., BERT) or de-
coder structure (e.g., GPT) can not solve an im-
portant problem: to fill in blanks with variable
lengths (Du et al., 2021; Shen et al., 2020b). The
decoder-based models can not make it because they
can only generate at the end of the sequence and
neither the encoder-based models because the num-
ber of [MASK]s will leak information. A natu-

Table 1: Three fundamental types of framework and
their suitable downstream tasks. “NLU” refers to nat-
ural language understanding. “Cond. Gen.” and “Un-
cond. Gen.” refer to conditional and unconditional text
generation, respectively. “X” means “is good at”, “—”
means “could be adapted to”, and “⇥” means “cannot
be directly applied to”. We define unconditional gen-
eration as the task of generating text without further
training as in a standard language model, while condi-
tional generation refers to seq2seq tasks such as text
summarization. Taken from (Du et al., 2021).

Framework NLU Cond. Gen. Uncond. Gen.

Autoregressive — — X
Autoencoding X ⇥ ⇥

Encoder-Decoder — X —

ral idea is to turn to encoder-decoder architecture
originally designed for machine translation, which
would produce variable lengths of target sequences
conditioned on the sources.

The pioneer of this genre is MASS (Song et al.,
2019), which introduces the masked-prediction
strategy into the encoder-decoder structure. How-
ever, MASS does not touch the problem of filling
variable-length blanks. T5 (Raffel et al., 2020)
solves the problem by masking a variable-length
of span in text with only one mask token and asks
the decoder to recover the whole masked sequence.
BART (Lewis et al., 2020a) introduces the inter-
esting idea of corrupting the source sequence with
multiple operations such as truncation, deletion, re-
placement, shuffling, and masking, instead of mere
masking. There are following works that specify in
typical seq2seq tasks, such as PEGASUS (Zhang
et al., 2020a) and PALM (Bi et al., 2020).

However, several challenges lie in front of
encoder-decoder architectures. First, the encoder-
decoder introduces much more parameters com-
pared to a single encoder/decoder. Although this
problem could be alleviated by parameter-sharing
of the encoder and decoder, its parameter-efficiency
is still doubtful. Second, encoder-decoder struc-
tures generally do not perform very well on natu-
ral language understanding. Despite reported im-
provements over similar-sized vanilla BERT, well-
trained RoBERTa or GLM encoder performs much
better than them.

4.2 Cognitive-Inspired Architectures
Is the current Transformer a good enough imple-
mentation of human beings’ cognitive system? Of
course not. Attention mechanism, the core mod-
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Figure 8: The family of recent typical PTMs, including both pre-trained language models and multimodal models.

ule in Transformer architecture, is inspired by the
micro and atom operation of the human’s cogni-
tive system and only responsible for the perceptive
function. However, human-level intelligence is far
more complex than the mere understanding of the
association between different things.

In pursuit for human-level intelligence, under-
standing the macro architecture of our cogni-
tive functions including decision making, logical
reasoning, counterfactual reasoning and working
memory (Baddeley, 1992) is crucial. In this subsec-
tion, we will take a look over the novel attempts in-
spired by advances of cognitive science, especially
on maintainable working memory and sustainable
long-term memory.

Maintainable Working Memory. A natural
problem of Transformer is its fixed window size
and quadratic space complexity, which significantly
hinders its applications in long document under-
standing.

Despite the bunch of modifications on approx-
imate computing of the quadratic growing point-
wise attention (Tay et al., 2020), a question is that
we humans do not present such a long-range at-
tention mechanism. As an alternative, cognitive
scientists have revealed that humans could main-
tain a working memory (Baddeley, 1992; Brown,
1958; Barrouillet et al., 2004; Wharton et al., 1994),

which not only memorizes and organizes but also
forgets. The conventional long-short term memory
network is an exemplar practice for such a philoso-
phy.

For Transformer-based architecture, the
Transformer-XL (Dai et al., 2019) is the first to
introduce segment-level recurrence and relative
positional encoding to fulfill this goal. How-
ever, the recurrence only implicitly models the
working memory. As a more explicit solution,
CogQA (Ding et al., 2019) proposes to maintain
a cognitive graph in the multi-hop reading. It is
composed of two systems: the System 1 based on
PTMs and the System 2 based on GNNs to model
the cognitive graph for multi-hop understanding.

A limitation of CogQA is that its use of the Sys-
tem 1 is still based on fixed window size. To endow
working memory with the ability to understand
long documents, CogLTX (Ding et al., 2020) lever-
ages a MemRecall language model to select sen-
tences that should be maintained in the working
memory and another model for answering or clas-
sification.

Sustainable Long-Term Memory. The success
of GPT-3 (Brown et al., 2020) and recent studies on
language models’ ability in recalling factual knowl-
edge (Petroni et al., 2019; Wang et al., 2020a; Liu
et al., 2021b) has revealed the fact that Transform-
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ers can memorize. But how does Transformers
make it?

In Lample et al. (2019), the authors provide some
inspiring evidences on how Transformers memo-
rize. They replace the feed-forward networks in
a Transformer layer with large key-value memory
networks, and find it to work pretty well. This
somehow proves that the feed-forward networks in
Transformers is equivalent to memory networks.

Nevertheless, the memory capacity in Transform-
ers is quite limited. For human intelligence, besides
working memory for deciding and reasoning, the
long-term memory also plays a key role in recall-
ing facts and experiences. REALM (Guu et al.,
2020) is a pioneer to explore how to construct a
sustainable external memory for Transformers. The
authors tensorize the whole Wikipedia sentence by
sentence, and retrieve relevant sentences as context
for masked pre-training. The tensorized Wikipedia
is asynchronously updated for a given number of
training steps. RAG (Lewis et al., 2020b) extends
the masked pre-training to autoregressive genera-
tion, which could be better than extractive question
answering.

Besides tensorizing the text corpora, (Verga
et al., 2020; Févry et al., 2020) propose to tensorize
entities and triples in existing knowledge bases.
When entities appear in contexts, they replace en-
tity tokens’ embedding in an internal Transformer
layer with the embedding from outer memory net-
works. (Dhingra et al., 2020; Sun et al., 2021)
maintain a virtual knowledge from scratch, and
propose a differentiable reasoning training objec-
tive over it. All of these methods achieve promising
improvement on many open-domain question an-
swering benchmarks.

4.3 More Variants of Existing PTMs

Besides the practice to unify sequence model-
ing and construct cognitive-inspired architectures,
most current studies focus on optimizing BERT’s
architecture to boost language models’ perfor-
mance on natural language understanding.

A stream of work aims at improving the mask-
ing strategy, which could be regarded as a certain
kind of data augmentation (Gu et al., 2020). Span-
BERT (Joshi et al., 2020) shows that masking a con-
tinuous random-length span of tokens with a span
boundary objective (SBO) could improve BERT’s
performance. Similar ideas have also been explored
in ERNIE (Sun et al., 2019b,c) (where a whole en-

tity is masked), NEZHA (Wei et al., 2019), and
Whole Word Masking (Cui et al., 2019).

Another interesting practice is to change the
masked-prediction objective to a harder one.
ELECTRA (Clark et al., 2020) transform MLM
to a replace token detection (RTD) objective, in
which a generator will replace tokens in original
sequences and a discriminator will predict whether
a token is replaced.

5 Utilizing Multi-Source Data

In this section, we introduce some typical PTMs
that take advantage of multi-source heterogeneous
data, including multilingual PTMs, multimodal
PTMs, and knowledge-enhanced PTMs.

5.1 Multilingual Pre-Training

Language models trained on large-scale English
corpora have achieved great success in many bench-
marks. However, we live in a multilingual world,
and training a large language model for each lan-
guage is not an elegant solution because of the cost
and the amount of data required. In fact, although
people from all over the world use different lan-
guages, they can express the same meaning. This
may indicate that semantics is independent of sym-
bol systems. Additionally, some researchers found
that they could get even better performance on
benchmarks when training one model with several
languages comparing with training several mono-
lingual models (Lample and Conneau, 2019; Huang
et al., 2020b). Hence, training one model to learn
multilingual representations rather than monolin-
gual representations may be a better way.

Before BERT, some researchers have explored
multilingual representations. There are mainly two
ways to learn multilingual representations. One
way is to learn through parameter sharing. For ex-
ample, training multilingual LSTMs with several
language pairs together achieves multilingual trans-
lation. Another way is to learn language-agnostic
constraints, such as decoupling language repre-
sentations into language-specific and language-
agnostic representations utilizing the WGAN (Ar-
jovsky et al., 2017) framework. Both of these two
ways enable models to be applied to multilingual
scenarios, but only for specific tasks. The model in
each of them is trained with one specific task from
beginning to end, and cross-lingual knowledge can-
not be generalized to other tasks. Hence, for any
other multilingual tasks, training new models from
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scratch is still required. Learning new models from
scratch needs a large volume of task-specific data.

The appearance of BERT shows that the frame-
work of pre-training with general self-supervised
tasks and then fine-tuning on specific downstream
tasks is feasible. This motivates researchers to
design tasks to pre-train versatile multilingual mod-
els. Multilingual tasks could be divided into un-
derstanding tasks and generation tasks according
to task objectives. Understanding tasks focus on
sentence-level or word-level classification, and are
of help for downstream classification tasks such as
natural language inference (Conneau et al., 2018b).
Generation tasks focus on sentence generation, and
are crucial in downstream generation tasks such as
machine translation.

Some understanding tasks are first used to pre-
train multilingual PTMs on non-parallel multilin-
gual corpora. For example, multilingual BERT
(mBERT) released by Devlin et al. (2019) is pre-
trained with the multilingual masked language
modeling (MMLM) task using non-parallel multi-
lingual Wikipedia corpora in 104 languages. The
research conducted by Pires et al. (2019) shows
that mBERT has the ability to generalize cross-
lingual knowledge in zero-shot scenarios. This in-
dicates that even with the same structure of BERT,
using multilingual data can enable the model to
learn cross-lingual representations. XLM-R (Con-
neau et al., 2020) builds a non-parallel multilingual
dataset called CC-100, which supports 100 lan-
guages. The scale of CC-100 is much larger than
the Wikipedia corpora used by mBERT, especially
for those low-resource languages. XLM-R is pre-
trained with MMLM as the only task on CC-100
and gets better performance on several benchmarks
than mBERT, which indicates that a larger scale of
multilingual corpora can bring better performance.

However, the MMLM task cannot well utilize
parallel corpora. In fact, parallel corpora are quite
important for some NLP tasks such as machine
translation. Intuitively, parallel corpora are very
helpful to directly learn cross-lingual representa-
tions for those sentences in different languages with
the same meanings. From this point, XLM (Lample
and Conneau, 2019) leverages bilingual sentence
pairs to perform the translation language modeling
(TLM) task. Similar to MLM in BERT, TLM com-
bines two semantically matched sentences into one
and randomly masks tokens in both parts. Com-
pared with MLM, TLM requires models to predict

the masked tokens depending on the bilingual con-
texts. This encourages models to align the repre-
sentations of two languages together.

Besides TLM, there are some other effective
methods to learn multilingual representations from
parallel corpora. Unicoder (Huang et al., 2019a)
provides two novel pre-training tasks based on par-
allel corpora: cross-lingual word recovery (CLWR)
and cross-lingual paraphrase classification (CLPC).
CLWR uses target language embeddings to repre-
sent source language embeddings by leveraging at-
tention mechanisms, and its objective is to recover
the source language embeddings. This task enables
models to learn word-level alignments between dif-
ferent languages. CLPC treats aligned sentences
as positive pairs and samples misaligned sentences
as negative pairs to perform sentence-level classi-
fication, letting models predict whether the input
pair is aligned or not. With CLPC, models can
learn sentence-level alignments between different
languages. ALM (Yang et al., 2020) automatically
generates code-switched sequences from parallel
sentences and performs MLM on it, which forces
models to make predictions based only on contexts
of other languages. InfoXLM (Chi et al., 2020b)
analyzes MMLM and TLM from the perspective
of information theory, and encourages models to
distinguish aligned sentence pairs with misaligned
negative examples under the framework of con-
trastive learning. HICTL (Wei et al., 2021) extends
the idea of using contrastive learning to learn both
sentence-level and word-level cross-lingual repre-
sentations. ERNIE-M (Ouyang et al., 2020) pro-
poses back-translation masked language modeling
(BTMLM), and expands the scale of parallel cor-
pora through back-translation mechanisms. These
works show that leveraging parallel corpora can
bring much help towards learning cross-lingual rep-
resentations.

Researches have also widely explored generative
models for multilingual PTMs. Normally, a gener-
ative model consists of a Transformer encoder and
a Transformer decoder. For example, MASS (Song
et al., 2019) extends MLM to language genera-
tion. It randomly masks a span of tokens in the
input sentence and predicts the masked tokens in
an autoregressive manner. Denoising autoencoding
(DAE) is a typical generation task, which applies
noise functions to the input sentence and then re-
stores the original sentence with the decoder. The
noise functions of DAE usually contain two opera-
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tions: replacing a span of tokens with a mask token
as well as permuting the order of tokens. mBART
(Liu et al., 2020c) extends DAE to support multiple
languages by adding special symbols. It adds a lan-
guage symbol both to the end of the encoder input
and the beginning of the decoder input. This en-
ables models to know the languages to be encoded
and generated.

Although DAE in mBART (Liu et al., 2020c) is
trained with multiple languages, the encoding in-
put and the decoding output are always in the same
language. This leads models to capture spurious
correlations between language symbols and gener-
ated sentences. In other words, models may ignore
the given language symbols and directly generate
sentences in the same language of the input. To ad-
dress this issue, XNLG (Chi et al., 2020a) proposes
the cross-lingual autoencoding (XAE) task. Differ-
ent from DAE, the encoding input and the decoding
output of XAE are in different languages, which is
similar to machine translation. In addition, XNLG
optimizes parameters in a two-stage manner. It
trains the encoder with the MLM and TLM tasks in
the first stage. Then, it fixes the encoder and trains
the decoder with the DAE and XAE tasks in the
second stage. All parameters are well pre-trained
by this way, and the gap between pre-training with
MLM and fine-tuning with autoregressive decoding
is also filled.

5.2 Multimodal Pre-Training

Large-scale pre-training and its downstream ap-
plications have cascaded impactful research and
development with diverse real-world modalities.
We see objects, hear sounds and speak languages.
Modalities, such as audio, video, image and text,
refer to how something happens or is experienced.
Tasks include multiple modalities that are devel-
oping in a fast-paced. More recently, large-scale
PTMs have enhanced research interests in the in-
tersection of multiple modalities, such as the in-
tersection of image and text, or the intersection of
video and text. Specifically, this kind of modalities
can all be classified as vision and language (V&L),
considering that images and videos belong to vi-
sion as well as text and speech (audio) belong to
language. V&L tasks can be further divided into
image-text-based tasks, video-text-based tasks, and
video-audio-based tasks according to their specific
modalities being used.

We now present a detailed overview of the previ-

ous trends in pre-training on V&L modalities. First,
for image-text-based PTMs, the most current solu-
tions are to adopt visual-linguistic BERT. The main
difficulty relies upon integrating non-text informa-
tion into the framework of BERT. ViLBERT (Lu
et al., 2019) is a model to learn task-agnostic joint
representations of images and languages. It extends
the BERT architecture to a multimodal model that
supports two streams of input, by preprocessing
textual and visual information separately. After
two encoders, it uses Transformer layers to ob-
tain united attention results for both textual and
visual information. ViLBERT first provides a new
mind for learning the relationship between vision
and language, which is no longer limited to learn
a specific task but takes the relationship between
vision and language as a pre-trainable and transfer-
able ability of models. It uses three pre-training
tasks: MLM, sentence-image alignment (SIA) and
masked region classification (MRC). It is evalu-
ated on five downstream tasks: visual question an-
swering (VQA), visual commonsense reasoning
(VCR), grounding referring expressions (GRE),
image-text retrieval (ITIR) and zero-shot image-
text retrieval (ZSIR). LXMERT (Tan and Bansal,
2019) has similar architecture compared to Vil-
BERT but uses more pre-training tasks: MLM, SIA,
MRC, masked region feature regression (MRFR)
and VQA. LXMERT is tested on three downstream
tasks: VQA, graph question answering (GQA) and
natural language for visual reasoning (NLVR2).

VisualBERT (Li et al., 2019), on the other side,
extends the BERT architecture at the minimum.
It can be regarded as a simple and effective base-
line for V&L pre-training. The Transformer lay-
ers of VisualBERT implicitly align elements in
the input text and image regions. It uses two pre-
training tasks: MLM and IA, and is tested on four
downstream tasks: VQA, VCR, NLVR2, and ITIR.
Unicoder-VL (Li et al., 2020a) moves the offsite
visual detector in VisualBERT into an end-to-end
version. It designs the image token for Transform-
ers as the sum of the bounding box and object label
features. It uses MLM, SIA and masked object
classification (MOC) as its pre-training tasks, as
well as uses IR, ZSIR and VCR as its downstream
tasks. VL-BERT(Su et al., 2020) also uses a similar
architecture to VisualBERT. For VL-BERT, each
input element is either a token from the input sen-
tence or a region-of-interest (RoI) from the input
image. It uses MLM and MOC as the pre-training
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tasks and finds that adding SIA will decrease model
performance. It is evaluated on three downstream
tasks: VQA, VCR and GRE.

Some multimodal PTMs are designed to solve
specific tasks such as VQA. B2T2(Alberti et al.,
2019) is the model that mainly focuses on VQA. It
designs a model for early fusion of the co-reference
between textual tokens and visual object features,
and then uses MLM and SIA as the pre-training
tasks. VLP (Zhou et al., 2020a) focuses on VQA
and image captioning. It uses a shared multi-
layer Transformer for both encoding and decod-
ing, different from many existing methods whose
encoder and decoder are implemented using sep-
arate models. It is pre-trained on bidirectional
masked language prediction (BMLP) and sequence
to sequence masked language prediction (s2sMLP).
Furthermore, UNITER (Chen et al., 2020e) learns
unified representations between the two modali-
ties. UNITER tries many pre-trained tasks, such as
MLM, SIA, MRC and MRFR. UNITER is also
tested on various downstream tasks: VQA, IR,
VCR, NLVR2, referring expression comprehension
(REC), and visual entailment (VE).

ImageBERT (Qi et al., 2020) is the same as
Unicoder-VL. It designs a novel weakly super-
vised approach to collect large-scale image-text
data from the website, whose volume and quality
are essential to V&L pre-train tasks. The collect-
ing steps include web-page collection, image filter-
ing, sentence detection, sentence cleaning, image-
text semantic scoring, and image-text aggregation.
The resulting dataset contains ten million images
and their descriptions with an average length of 13
words, which shows benefits to pre-training multi-
modal PTMs. The pre-training tasks include MLM,
SIA, MOC and MRFR, while only being tested on
one downstream task: ITIR. Lu et al. (2020) investi-
gate relationships between nearly all V&L tasks by
developing a large-scale, multi-task training regime.
It classifies the common tasks into four groups:
VQA, caption-based image retrieval, grounding re-
ferring expressions, and multimodal verification.
It adopts two pre-training tasks by masking mul-
timodal modeling only for aligned image-caption
pairs and masking overlapped image regions, while
performing well on five downstream tasks: VQA,
GQA, IR, RE and NLVR2.

X-GPT (Xia et al., 2020) finds that while pre-
vious BERT-based multimodal PTMs produce ex-
cellent results on downstream understanding tasks,

they cannot be applied to generation tasks directly.
It is then proposed to pre-train text-to-image cap-
tion generators through three novel generation
tasks, including image-conditioned masked lan-
guage modeling (IMLM), image-conditioned de-
noising autoencoding (IDA), and text-conditioned
image feature generation (TIFG). For downstream
tasks, it focuses only on image captioning (IC).
Oscar (Li et al., 2020e) uses object tags detected
in images as anchor points to ease the learning of
alignments significantly. It is motivated by the ob-
servation that the salient objects in an image can
be accurately detected and often mentioned in the
paired text. It performs well on six downstream
tasks: ITIR, IC, novel object captioning (NOC),
VQA, GCQ and NLVR2.

A bigger step towards conditional zero-shot im-
age generation is taken by DALLE (Ramesh et al.,
2021) from OpenAI and CogView (Ding et al.,
2021) from Tsinghua and BAAI. DALLE is the
very first transformer-based text-to-image zero-
shot pre-trained model with around 10 billiion pa-
rameters. It shows the potential of multi-modal
pre-trained models to bridge the gap between text
descriptions and image generation, especially the
excellent ability in combining different objects,
such as “an armchair in the shape of an avocado".
CogView improves the numerical precision and
training stability by introducing sandwich trans-
former and sparse attention mechanism, and thus
surpasses the DALLE in FID and . It is also the
first text-to-image model in Chinese.

Recently, CLIP (Radford et al., 2021) and Wen-
Lan (Huo et al., 2021) explore enlarging web-scale
data for V&L pre-training with big success. Com-
paring to previous works, they face a large-scale
distributed pre-training challenge. We will intro-
duce how to handle the large-scale distributed pre-
training challenge in the next section.

5.3 Knowledge-Enhanced Pre-Training

PTMs can extract plenty of statistical information
from large amounts of data. Besides, external
knowledge, such as knowledge graphs, domain-
specific data and extra annotations of pre-training
data, is the outcome of human wisdom which can
be a good prior to the modeling of statistics. In this
subsection, we classify external knowledge accord-
ing to the knowledge format and introduce several
methods attempting to combine knowledge with
PTMs.

Jo
urn

al 
Pre-

pro
of



…

…

…Stream 1

Stream 2

Step i-1 Step i Step i+1

Gradient 
Offload

(GPU->CPU)

Parameter
Swap

(CPU->GPU)

Gradient 
Offload

(GPU->CPU)

Parameter
Swap

(CPU->GPU)

Gradient 
Offload

(GPU->CPU)

FWD&BWD
(GPU)

FWD&BWD
(GPU)

Parameter
Update (CPU)

FWD&BWD
(GPU)

Parameter
Update (CPU)

…

Gradient 
Offload

(GPU->CPU)

Parameter
Update
 (CPU)

FWD&BWD
(GPU)

Parameter
Swap

(CPU->GPU)

Gradient 
Offload

(GPU->CPU)

Parameter
Update
 (CPU)

FWD&BWD
(GPU)

Parameter
Swap

(CPU->GPU)

Gradient 
Offload

(GPU->CPU)

FWD&BWD
(GPU)

Parameter
Swap

(CPU->GPU)

Parameter
Update
 (CPU)

…

…

…Stream 1

Stream 2

Step i-1 Step i Step i+1

…

Step i+2

ZeRO-Offload (Delayed Parameter Update)

ZeRO-Offload 

Figure 9: An illustration of ZeRO-Offload and ZeRO-Offload with delayed parameter update.

The typical form of structured knowledge is
knowledge graphs. Many works try to enhance
PTMs by integrating entity and relation embed-
dings (Zhang et al., 2019b; Liu et al., 2020a; Pe-
ters et al., 2019; Sun et al., 2020; Rosset et al.,
2020; Qin et al., 2021) or their alignments with the
text (Xiong et al., 2019; Sun et al., 2019b). How-
ever, real-world knowledge graphs like Wikidata
contain more information than entities and rela-
tions. Wang et al. (2021) pre-train models based on
the descriptions of Wikidata entities, by incorpo-
rating a language model loss and a knowledge em-
bedding loss together to get knowledge-enhanced
representations. Some works regard the paths and
even sub-graphs in knowledge graphs as a whole,
and directly model them and the aligned text to re-
tain more structural information. Since aligning en-
tities and relations to raw text is often troublesome
and can introduce noise in data pre-processing, an-
other line of works (Bosselut et al., 2019; Guan
et al., 2020; Chen et al., 2020d) can directly con-
vert structural knowledge into the serialized text
and let models learn knowledge-text alignments
by themselves. An interesting attempt is OAG-
BERT (Liu et al., 2021a), which integrates hetero-
geneous structural knowledge in the open academic
graph (OAG) (Zhang et al., 2019a), which covers
0.7 billion heterogeneous entities and 2 billion re-
lations.

Compared to structured knowledge, unstructured
knowledge is more intact but also noisier. How to
effectively model this kind of knowledge from the
data is also worth being explored. The data of a
specific domain or task can be considered as a kind

of unstructured knowledge. Many works (Beltagy
et al., 2019; Lee et al., 2020) further pre-train the
general PTMs on this data to get better domain-
specific or task-specific models. Since there are
some domain-specific and task-specific human an-
notations, Ke et al. (2020) incorporate these ex-
tra annotations to get better domain-specific and
task-specific language representations. For all
the above-mentioned works, knowledge is implic-
itly stored in their model parameters. To model
external knowledge in a more interpretable way,
some works (Lewis et al., 2020b; Guu et al., 2020)
design retrieval-based methods to use structured
knowledge on downstream tasks. Another kind
of works (Wang et al., 2020b) can use adapters
trained on different knowledge sources with extra
annotations to distinguish where the knowledge is
from.

6 Improving Computational Efficiency

As introduced in Section 1, a major trend of PTMs
is that the number of parameters is getting larger
and larger. Increasing the size of a neural network
typically improves accuracy, but it also increases
the memory and computational requirements for
training the model. In this section, we will in-
troduce how to improve computational efficiency
from the following three aspects: system-level opti-
mization, efficient learning algorithms, and model
compression strategies.

6.1 System-Level Optimization
An effective and practical way to reduce compu-
tational requirements is system-level optimization
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Figure 10: An illustration of the data parallelism and model parallelism with 16 nodes.

towards computational efficiency and memory us-
age. System-level optimization methods are often
model-agnostic and do not change underlying learn-
ing algorithms. Therefore, they are widely used in
training large-scale PTMs. Generally, these meth-
ods can be divided into single-device optimization
methods and multi-device optimization ones.

Single-Device Optimization. Current large-scale
PTMs usually cost a lot of memory for pre-training.
This is mainly due to the redundant representation
of floating-point numbers. Modern deep learning
systems are mainly based on a single-precision
floating-point format (FP32). However, the weights
of models usually fall in a limited range, and us-
ing a half-precision floating-point format (FP16)
can accomplish most of the computation with little
precision loss (Gupta et al., 2015).

However, in some cases, training models in
FP16 may fail because of the floating-point trunca-
tion and overflow. To tackle this problem, mixed-
precision training methods (Micikevicius et al.,
2018) have been proposed, which preserve some
critical weights in FP32 to avoid the floating-point
overflow and use dynamic loss scaling operations
to get rid of the floating-point truncation. Sufficient
experiments have shown that mixed-precision train-
ing methods are more stable than directly training
models in FP16. Although mixed-precision train-
ing methods can significantly reduce the training
time and memory usage, they still face some chal-
lenges. When model parameters are not initialized
well, mixed-precision methods may still cause un-
stable training. All these challenges still require to
be further explored.

Besides the redundant representation of floating-
point numbers, the activation states saved for com-
puting gradients are also redundant. For exam-
ple, in Transformer-based models, apart from the
weights of attention layers and linear layers, com-
putational devices also store the hidden states of
each layer for the efficiency of the chain rule used
in the gradient back-propagation. As compared
with model parameters, these hidden states can
consume even much more memory. To handle re-
dundant activation states, gradient checkpointing
methods (Rasley et al., 2020) have been used to
save memory by storing only a part of the activation
states after forward pass. The discarded activation
states are recomputed during the backward steps if
necessary.

When pre-training recent large-scale PTMs, the
memory consumption can be too large to fit in a
single GPU. Therefore, some works (Huang et al.,
2020a) attempt to store model parameters and acti-
vation states with the CPU memory rather than the
GPU memory, since the CPU memory is usually
much larger. As shown in Figure 9, some works
such as ZeRO-Offload (Ren et al., 2021) design
delicate strategies to schedule the swap between
the CPU memory and the GPU memory so that
memory swap and device computation can be over-
lapped as much as possible.

Multi-Device Optimization. Recently, distributed
training is commonly used in pre-training, where
multiple GPUs distributed in many computational
nodes are used together to train a single model.
Data parallelism (Li et al., 2020d) is a simple and
effective approach to accelerate training a model.
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Figure 11: An illustration of the pipeline parallelism with 4 nodes and 4 micro batches.

As shown in Figure 10, when we use data paral-
lelism, a large batch is partitioned to different nodes
and thus forward pass can be parallelized. At back-
ward pass, the gradients on different nodes should
be aggregated with all-reduce operations to ensure
the consistency of parameter optimization, which
may introduce additional communication overhead.

When pre-training models with billions to tril-
lions of parameters, traditional data parallelism
brings challenges of fitting whole model parame-
ters into a single GPU, even with half-precision or
mixed-precision training. Although this problem
can be solved by using a GPU with larger mem-
ory, the expenses can be hard to afford, limiting
the use of PTM by ordinary researchers. Model
parallelism is an effective way to tackle this prob-
lem (Shazeer et al., 2018). As shown in Figure 10,
when conducting model parallelism, model parame-
ters can be distributed to multiple nodes. The com-
munication operations between these nodes like
reduce-scatter and all-gather guarantee the correct-
ness of forward pass and backward pass. Megatron-
LM (Shoeybi et al., 2019) adopts model parallelism
to Transformer-based PTMs. It splits self-attention
heads as well as feed-forward layers into differ-
ent GPUs, reducing the memory burden of a sin-
gle GPU. Mesh-Tensorflow (Shazeer et al., 2018)
also enables users to split tensors along any ten-
sor dimensions, which can bring more customized
options for model parallelism.

Although model parallelism enables different
computational nodes to store different parts of
model parameters, it has to insert collective com-
munication primitives during both forward pass
and backward pass, which can not be overlapped
by device computation. On the contrary, the all-
reduce collective communication operation in data
parallelism usually can be overlapped by the back-
ward computation. As a result, data parallelism

is preferred as long as it can conquer the exces-
sive requirement of memory capacity. In the stan-
dard implementation of data parallelism, optimizer
states are usually copied along different nodes to
guarantee synchronized optimization across data
parallelism units. This redundancy leads to the
additional overhead of GPU memory, especially
when models are trained in a mixed-precision man-
ner because the optimizer needs to store 32-bit
master states of these models to ensure accuracy.
To eliminate the redundancy brought by optimizer
states and parameters, ZeRO optimizer (Rajbhan-
dari et al., 2020) methods equally partition and
distribute optimizer states to each node of data par-
allelism, such that each node only updates the op-
timizer states corresponding to its partition. At
the end of a training step, all optimizer states are
gathered across data parallelism nodes.

The above-mentioned model parallelism tech-
niques mainly focus on partitioning and paralleliz-
ing matrix operations across different nodes. As
shown in Figure 11, another effective method for
model parallelism is pipeline parallelism, which
partitions a deep neural network into multiple lay-
ers and then puts different layers onto different
nodes. After the computation of each node, the
output is sent to the next node where the next
layer computation takes place. Since pipeline par-
allelism only needs to communicate the interme-
diate activation states between nodes performing
adjacent stages of the pipeline, the communication
cost is relatively small. Existing pipeline methods
include GPipe (Huang et al., 2019b) which can
send smaller parts of samples within a mini-batch
to different nodes, and TeraPipe (Li et al., 2021)
which can apply token-level pipeline mechanisms
for Transformer-based models to make each token
in a sequence be processed by different nodes. Both
of these pipeline methods speed up the large-scale
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PTMs. However, they should be stopped at the end
of each batch until the gradient back-propagation
is complete, which can lead to pipeline bubbles.

6.2 Efficient Pre-Training

Besides some system-level optimization methods,
various efforts have been devoted to exploring more
efficient pre-training methods, so that we can pre-
train large-scale PTMs with a lower cost solution.

Efficient Training Methods. Conventional pre-
training tasks can be sample-inefficient. For exam-
ple, for MLM which is widely used to pre-train re-
cent PTMs, models are required to predict masked
tokens according to contexts. The masked tokens
are usually a subset (typically 15%) of input tokens,
i.e., models can only learn from a small set of input
tokens. To tackle this problem, ELECTRA (Clark
et al., 2020) applies the replaced token detection
task. This task forces models to distinguish whether
an input token is replaced by a generator. This
task can leverage more supervision information
from each sample since all input tokens need to be
distinguished. ELECTRA takes much fewer pre-
training steps when it reaches similar performance
to those MLM models. Furthermore, traditional
MLM randomly masks tokens in a document to
predict. Since the difficulty of predicting different
tokens varies a lot, the random masking strategy
makes the training process aimless and inefficient.
Therefore, some works selectively mask tokens
based on their importance (Gu et al., 2020) or gra-
dients (Chen et al., 2020b) in back-propagation to
speed up model training.

Apart from the pre-training tasks, the current
pre-training dynamics are also sub-optimal. Re-
cent large-scale PTMs usually require a large batch
size. But in an early work (Goyal et al., 2017),
researchers find that naively increasing the batch
size may cause difficulty in optimization. There-
fore, they propose a warmup strategy that linearly
increases the learning rate at the beginning of train-
ing. This strategy is commonly used in recent large-
scale PTMs. Another feature of recent PTMs is
that they are usually composed of multiple stacks
of a base structure like Transformers. The con-
ventional training paradigm optimizes each layer
simultaneously using the same hyper-parameters.
However, some recent works study Transformer-
based models and claim that different layers can
share similar self-attention patterns. Therefore, a
shallow model can firstly be trained and then dupli-

cated to construct a deep model (Gong et al., 2019).
Some layers can also be dropped during training
to reduce the complexity of back-propagation and
weight update (Zhang and He, 2020). In addition,
You et al. (2017) and You et al. (2020) find that
adaptively using different learning rates at differ-
ent layers can also speed up convergence when the
batch size is large.

Efficient Model Architectures. Besides efficient
pre-training methods, more variants of model ar-
chitectures can also reduce the computational com-
plexity to improve the efficiency of training PTMs.
For most Transformer-based PTMs, as their input
sequence goes longer, their efficiency is limited
by the computation of attention weights due to
its quadratic time and space complexity of the se-
quence length. Therefore, many works attempt
to reduce the complexity of Transformers. Some
works (Peng et al., 2021; Choromanski et al., 2021;
Wang et al., 2020c; Katharopoulos et al., 2020) de-
sign low-rank kernels to theoretically approximate
the original attention weights and result in linear
complexity. Some works (Child et al., 2019) intro-
duce sparsity into attention mechanisms by limiting
the view of each token to a fixed size and separating
tokens into several chunks so that the computation
of attention weights takes place in every single
chunk rather than a complete sequence. Compared
to predefined chunks, some works (Roy et al., 2021;
Kitaev et al., 2020) find that using learnable param-
eters to assign tokens into chunks results in bet-
ter performance. Another kind of methods (Guo
et al., 2019; Lee et al., 2019; Beltagy et al., 2020;
Ainslie et al., 2020; Zaheer et al., 2020) combine
global and local attention mechanisms, and then
use global nodes to gather tokens in a sequence. In
this way, the long sequence is compressed into a
small number of elements so that we can reduce
the complexity.

Keeping the same theoretical computation com-
plexity as the original Transformer, more vari-
ants of the model structure can also accelerate the
model convergence. Mix-of-experts (MoE) has
been proved early (Shazeer et al., 2017) to increase
the parameters of deep neural models while keep-
ing the computational overhead nearly unchanged.
Recently, Switch Transformers (Fedus et al., 2021)
employ this technique in pre-training. They add
multiple experts to each layer of Transformers. Dur-
ing each forward and backward step, they select
only one expert for computation, and thus the train-
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ing and inference time remain similar to the ordi-
nary Transformers without experts. Some experi-
mental results show that MoE-based models con-
verge faster than the ordinary ones due to the signif-
icantly larger model capacity brought by multiple
experts. Some efficient open-source toolkits (He
et al., 2021) are also developed to train large-scale
MoE-based models.

6.3 Model Compression

Another important approach to improve the effi-
ciency of PTMs is model compression. In this
setting, large models are compressed to small ones
to meet the demand for faster inference and deploy-
ment on resource-constrained devices.

Parameter Sharing. PTMs can be compressed
with sharing parameters across similar units. AL-
BERT (Lan et al., 2019) uses factorized embedding
parameterization and cross-layer parameter sharing
to reduce the parameters of PTMs. Using same
weights across all Transformer layers, ALBERT
achieves a significant parameter reduction based on
the BERT model, and meanwhile has the same or
even better performance. This indicates that PTMs
can be extremely over-parameterized.

Model Pruning. To take more advantage of the
over-parameterized feature of current PTMs, an-
other method to reduce model parameters is model
pruning, which cuts off some useless parts in PTMs
to achieve accelerating while maintaining the per-
formance. In (Fan et al., 2019), Transformer layers
are selectively dropped during training, resulting in
a more shallow model during inference. In (Michel
et al., 2019), (Voita et al., 2019) and (Zhang et al.,
2021b), researchers study the redundancy of the
attention heads in Transformers and find that only
a small part of them is enough for good perfor-
mance. Most of these heads can be removed with
little impact on the accuracy. Other trials such as
CompressingBERT (Gordon et al., 2020) try to
prune the weights of attention layers and linear lay-
ers to reduce the number of parameters in PTMs,
while maintaining the comparable performance to
the original model.

Knowledge Distillation. Although ALBERT
saves the memory usage of PTMs, its inference
time is not significantly decreased since features
still need to go through its layers with the same
number as the original model. Knowledge distilla-
tion aims at training a small model to reproduce the

behavior of a large teacher model. The memory us-
age and the time overhead are both decreased when
using a small distilled model for inference. There
are some typical works employing knowledge dis-
tillation for PTMs, such as DistillBERT (Sanh
et al., 2019), TinyBERT (Jiao et al., 2019), BERT-
PKD (Sun et al., 2019a) and MiniLM (Wang et al.,
2020d). In these works, a small student model is
trained to mimic the output probability, the hidden
states, and the attention matrices of a large teacher
model during both the pre-training and fine-tuning
stages. With knowledge distillation, the model-
egy in the teacher model is transferred into the
student model, which can lead to increasing perfor-
mance compared to training a student model alone.
However, the knowledge distillation methods men-
tioned above require the data used for pre-training
the teacher model, which is usually not released
in consideration of the data copyright and privacy.
Moreover, the teacher model needs to forward over
the entire pre-training data to produce logits or
intermediate representations for knowledge distil-
lation, causing an even longer training time.

Model Quantization. To get a more compressed
model, model quantization is also a useful tech-
nique, which has been widely explored in some
CNN-based models (Stock et al., 2020; Polino
et al., 2018). Model quantization refers to the com-
pression of higher-precision floating-point parame-
ters to lower-precision floating-point ones. Conven-
tional PTMs are usually represented in 32 bits or 16
bits, while models after quantization can be in 8 bits
or even 1 or 2 bits. For recent Transformer-based
models, 8-bit quantization has been proved to be ef-
fective for model compression in Q8BERT (Zafrir
et al., 2019), with little impact on the model per-
formance. Despite this, training 1 or 2 Bits models
remains challenging due to the significant decrease
in model capacity. To alleviate the performance
degradation, other methods to preserve the accu-
racy can also be employed. Q-BERT (Shen et al.,
2020a) uses mixed-bits quantization in which the
parameters with higher Hessian spectrum require
higher precision while those parameters with lower
Hessian spectrum need lower precision. Ternary-
BERT (Zhang et al., 2020b) applies knowledge
distillation in quantization, forcing low-bit models
to imitate full-precision models. Both Q-BERT and
TernaryBERT result in ultra low-bit models. How-
ever, low-bit representation is a highly hardware-
related technique, which means quantization often
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requires specific hardware and can not generalize
to other devices.

7 Interpretation and Theoretical
Analysis

Beyond the superior performance of PTMs on vari-
ous NLP tasks, researchers also explore to interpret
the behaviors of PTMs, including understanding
how PTMs work and uncovering the patterns that
PTMs capture. These works cover several impor-
tant properties of PTMs: knowledge, robustness,
and structural sparsity/modularity. Moreover, there
are some pioneering works on building the theoret-
ical analysis for PTMs.

7.1 Knowledge of PTMs
The implicit knowledge captured by PTMs can
be roughly divided into two categories: linguistic
knowledge and world knowledge.

Linguistic Knowledge. The linguistic knowledge
of PTMs attracts most of attentions among all top-
ics of PTMs’ interpretation. Compared to con-
ventional neural models such as CNNs and RNNs
which have fewer layers and parameters, large-
scale PTMs can learn rich linguistic knowledge
from massive pre-training data. In order to study
PTMs’ linguistic knowledge, researcher design sev-
eral approaches: (1) Representation Probing: Fix
the parameters of PTMs and train a new linear layer
on the hidden representations of PTMs for a spe-
cific probing task. It is the most popular approach
because it can be easily adapted to any probing
task without particular design. (2) Representation
Analysis: Use the hidden representations of PTMs
to compute some statistics such as distances or sim-
ilarities. According to these statistics, we can con-
struct the relation between different words, phrases,
or sentences. (3) Attention analysis: similar to
representation analysis, attention analysis compute
statistics about attention matrices and is more suit-
able to discover the hierarchical structure of texts.
(4) Generation Analysis: Use language models to
directly estimate the probabilities of different se-
quences or words. The target texts could be correct
or incorrect in some linguistic phenomenons.

Representation probing have been widely ap-
plied to analyze NLP neural models from word
embeddings to PTMs (Köhn, 2015; Ettinger et al.,
2016; Shi et al., 2016; Adi et al., 2017; Conneau
et al., 2018a; Hewitt and Manning, 2019; Glavaš
and Vulić, 2021). Liu et al. (2019) conduct com-

prehensive probing experiments on 11 linguistic
tasks and find that the representations given by
large-scale PTMs are competitive compared to pre-
vious task-specific models, which indicates that the
models have already learned knowledge about to-
kens, chunks, and pairwise relations. To further
investigate how PTMs represent sentence struc-
tures about syntactic, semantic, local, and long-
range information, Tenney et al. (2019b) design
a new edge probing task and examine PTMs on
a broad suite of sub-sentence tasks and show that
PTMs have strong ability to encode syntactic in-
formative while they bring little improvement on
semantic tasks. Similarly, several works also reveal
the strong syntax encoding of PTMs (Vilares et al.,
2020; Warstadt and Bowman, 2020; Hewitt and
Manning, 2019). To analyze the function of differ-
ent layers, Jawahar et al. (2019a) and Tenney et al.
(2019a) show that PTMs encode linguistic informa-
tion with phrase features at the bottom, syntactic
features in the middle and semantic features at the
top. Compared to non-contextual representations
(e.g., word2vec), PTMs’ representations are bet-
ter in encoding sentence-level properties (Miaschi
and Dell’Orletta, 2020). Furthermore, Manning
et al. (2020) explore to reconstruct the sentence
tree structures given by linguists using a linear
transformation of PTMs’ embeddings and achieve
promising results.

Besides representation probing, researchers try
to uncover the structure and relation among dif-
ferent representations. Kim et al. (2020) propose
to leverage the concept of Syntactic Distance to
construct the constituency trees of sentences from
word representations. Rosa and Mareček (2019)
analyze how the deletion of one word in a sentence
changes representations of other words to reveal
the influence of one word on other words.

There are also several works on interpreting
PTMs via attention matrices. Lin et al. (2019) quan-
titatively evaluate attention matrices for subject-
verb agreement and anaphor-antecedent dependen-
cies, and show that PTMs tend to encode positional
information in lower layers and capture hierarchical
information in higher layers. To better characterize
the behaviors of PTMs’ attention matrices, Htut
et al. (2019) propose to take the maximum atten-
tion weight and compute the maximum spanning
tree as two statistics. Based on the experimental
results, they find that fine-tuning has little impact
on the self-attention patterns.
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Since PTMs can be directly used to generate
tokens or estimate the probabilities of different sen-
tences, it is intuitive to construct analysis tasks
based on generation (Goldberg, 2019). Perturbed
Masking (Wu et al., 2020) recovers syntactic trees
from PTMs without any extra parameter and the
structure given by PTMs are competitive with
a human-designed dependency schema in some
downstream tasks. To analysis the gain of pre-
training on estimating the probabilities of ungram-
matical words, Schijndel (Schijndel et al., 2019)
show that expanding the training corpus yields di-
minishing returns and the training corpus would
need to be unrealistically large to make PTMs
match human performance.

World Knowledge. In addition to linguistic knowl-
edge, PTMs also learn rich world knowledge
from pre-training, mainly including commonsense
knowledge and factual knowledge (Zhou et al.,
2020b; Bouraoui et al., 2020).

For the commonsense knowledge, Ettinger (Et-
tinger, 2020) first evaluates PTMs’ knowledge in
the aspect of psycholinguists and find that the mod-
els perform well in the situation of shared category
or role reversal but fail with challenging inferences
and role-based event. Then, to extract common-
sense from PTMs, Davison et al. (2019) propose
to first transform relational triples into masked sen-
tences and then rank these sentences according to
the mutual information given by PTMs. In the ex-
periments, the PTM-based extraction method with-
out further training even generalizes better than
current supervised approaches. Similarly, Da and
Kasai (2019) also find that PTMs have learned var-
ious commonsense features in their representation
space based on a series of probing tasks. In ad-
dition to the commonsense features/attributes, the
implicit relations between different attributes are
important and Forbes et al. (2019) show that current
PTMs’ representations cannot model the implicit
relations well, which requires further exploration.

For factual knowledge, Petroni et al. (2019) pro-
pose to formulate the relational knowledge gener-
ation as the completion of fill-in-the-blank state-
ments. According to the experimental results, they
find that PTMs significantly outperform previous
supervised baselines on this task without any fine-
tuning. However, the construction of these fill-in-
the-blank statements is non-trivial. To extract more
factual knowledge from PTMs, LPAQA (Jiang
et al., 2020b) have been propose to automatically

search better statements/prompts through mining-
based and paraphrasing-based methods. Auto-
Prompt (Shin et al., 2020) proposes to train discrete
prompts for knowledge probing. In P-tuning (Liu
et al., 2021b), the authors discover that the bet-
ter prompts lie in continuous embedding space,
rather than discrete space. The P-tuning boosts the
P@1 performance on LAMA to 64%, which is 20%
higher than AutoPrompt. Moreover, Roberts et al.
(2020) fine-tune PTMs for the task of open-domain
question answering and find that fine-tuning can
further benefit the knowledge generation of PTMs.
However, Pörner et al. (2020) find that the success
of knowledge generation may rely on learning neu-
ral stereotypical associations, i.e., a person with
an Italian-sounding name will be predicted to Ital-
ian by PTMs. For understanding the number in
texts, Wallace et al. (2019c) find that ELMo cap-
tures numeracy the best for all pre-trained meth-
ods, which is a character-based model, but BERT,
which uses sub-word units, is less exact. (Wang
et al., 2020a) investigates the knowledge stored in
Transformer’s feed-forward attention matrices and
proposes a framework to construct open knowledge
graphs using PTMs.

7.2 Robustness of PTMs

Recent works have identified the severe robust-
ness problem in PTMs using adversarial exam-
ples. Adversarial attacks aims to generate new
samples, which are mis-classified by models, by
small perturbation on the original inputs. For ex-
ample, PTMs can be easily fooled by synonym
replacement (Jin et al., 2020; Zang et al., 2020).
Meanwhile, irrelevant artifacts such as form words
can mislead the PTMs into making wrong predic-
tions (Niven and Kao, 2019; Wallace et al., 2019a).
Current works mainly utilize the model prediction,
prediction probabilities, and model gradients of
the models to search adversarial examples. How-
ever, it is difficult to maintain the quality of the
adversarial examples generated by machines. Re-
cently, human-in-the-loop methods (Wallace et al.,
2019b; Nie et al., 2020) have been applied to gen-
erate more natural, valid, and diverse adversarial
examples, which brings larger challenge and ex-
pose more properties and problems of PTMs. In
conclusion, the robustness of PTMs has become a
serious security threat when people deploy PTMs
for real-world applications.
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7.3 Structural Sparsity of PTMs

Following BERT, most PTMs adopt Transformer
as the architecture backbone. Although people can
easily train a deep Transformer and achieve signifi-
cant improvement over previous works using CNN
and RNN, Transformer meets the problem of over-
parameterization. Researchers have shown that the
multi-head attention structures are redundant in the
tasks of machine translation (Michel et al., 2019),
abstractive summarization (Baan et al., 2019), and
language understanding (Kovaleva et al., 2019),
i.e., when removing part of attention heads, we can
achieve better performance. This phenomenon is
consistent to the observation in (Clark et al., 2019)
where they find that most heads in the same layer
have similar self-attention patterns. Furthermore,
Kovaleva et al. (2019) conduct a qualitative and
quantitative analysis of the information encoded
by PTMs’ heads. Their findings suggest that the
attention behaviors of different heads can be cate-
gorized into a limited set of patterns. Besides the
multi-head attention, several other works explore
to identify the sparsity of parameters. Gordon et al.
(2020) show that low levels of pruning (30-40%)
do not affect pre-training loss or the performance
on downstream tasks at all. Targeting the sparsity
during fine-tuning, Prasanna et al. (2020) validate
the lottery ticket hypothesis on PTMs and find that
it is possible to find sub-networks achieving per-
formance that is comparable with that of the full
model. Surprisingly, Kao et al. (2020) show that we
can improvement the performance by simply du-
plicating some hidden layers to increase the model
capacity, which suggests that the redundant param-
eters may benefit the fine-tuning.

7.4 Theoretical Analysis of PTMs

Since pre-training has achieved great success in
deep learning, researchers try to investigate how
pre-training works, especially unsupervised pre-
training. In the early days of deep learning, peo-
ple found that it is effective to train a deep belief
network by greedy layer-wise unsupervised pre-
training followed by supervised fine-tuning (Hin-
ton et al., 2006). Recently, pre-training based on
contrast learning including language modeling has
become the mainstream approach. In this section,
we will introduce some theoretical explanatory hy-
potheses or frameworks for pre-training.

Erhan et al. (2010) propose two hypotheses to ex-
plain the effect of pre-training: (1) better optimiza-

tion and (2) better regularization. In the aspect of
better optimization, the network with pre-training
is closer to the global minimum compared to the
models randomly initialized. In the aspect of better
regularization, the training error of PTMs is not
necessarily better than the random models while
the test error of PTMs is better, which means bet-
ter generalization ability. Then, the experimental
results lean towards the second hypothesis. They
find that the PTM doesn’t achieve lower training
error. Moreover, compared to other regularization
approaches such as L1/L2, the unsupervised pre-
training regularization is much better.

Towards the recent development of pre-training
objective, Saunshi et al. (2019) conduct a theoreti-
cal analysis of contrastive unsupervised representa-
tion learning. Contrastive learning treats the pairs
of text/images appearing in the same context as
the semantically similar pairs and the randomly
sampled pairs as the semantically dissimilar pairs.
Then, the distance between the similar pair should
be close and the distance between the dissimilar
pair should be distant. In the prediction process
of language modeling, the context and the target
word are the similar pair and the other words are
negative samples (Kong et al., 2020). Saunshi et al.
(2019) first provide a new conceptual framework
to bridge the gap between pre-training and fine-
tuning. Specifically, they introduce the concept of
latent classes and the semantically similar pairs are
from the same latent class. For example, the latent
class can be “’happy” to include all texts including
happy sentiments. The latent classes cover all pos-
sible classes and the classes defined by downstream
tasks are from the set of latent classes. Then, they
prove that the loss of contrastive learning is the
upper bound of the downstream loss. Hence, when
optimizing the pre-training loss, we can expect a
lower loss in downstream tasks.

8 Future Direction

So far, we have comprehensively reviewed the past
and present of PTMs. In the future, on the basis
of existing works, PTMs can be further developed
from the following aspects: architectures and pre-
training methods (section 8.1), multilingual and
multimodal pre-Training (section 8.2), computa-
tional efficiency (section 8.3), theoretical founda-
tion (section 8.4), modeledge learning (section 8.5),
cognitive learning (section 8.6), and novel applica-
tions (section 8.7). In fact, researchers have made
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lots of efforts in the above directions, and we have
also introduced the latest breakthroughs in the pre-
vious sections. However, there are still some open
problems in these directions that need to be further
addressed. We mainly focus on discussing these
open problems in this section.

8.1 Architectures and Pre-Training Methods
From the aspect of architectures and pre-training
methods, we believe the following problems worth
further exploring in the future:

New Architectures. Transformers have been
proved to be an effective architecture for pre-
training. However, the main limitation of Trans-
formers is its computational complexity. Lim-
ited by the memory of GPUs, most current PTMs
cannot deal with sequences containing more than
512 tokens. Therefore, it is important to search
for more efficient model architectures to capture
longer-range contextual information. However, the
design of deep architecture is challenging, and we
may seek help from some automatic methods, such
as neural architecture search (NAS). Besides, al-
though larger PTMs can usually lead to better per-
formance, a practical problem is how to leverage
these huge PTMs on some special scenarios, such
as low-capacity devices and low-latency applica-
tions, where the efficiency of PTMs is a key factor.
Moreover, different downstream tasks prefer dif-
ferent architectures. For example, the Transformer
encoder is suitable for natural language understand-
ing tasks while the Transformer decoder is suitable
for natural language generation tasks. Therefore,
we may need to carefully design task-specific ar-
chitectures according to the type of downstream
tasks.

New Pre-Training Tasks. The general-purpose
PTMs are always our pursuits for learning the
intrinsic universal knowledge of languages (even
world knowledge). However, such PTMs usually
need deeper architecture, larger corpora and chal-
lenging pre-training tasks. All these requirements
further result in higher training costs. Moreover,
training huge models is also a challenging prob-
lem, which needs sophisticated and efficient train-
ing techniques such as distributed training, mixed-
precision training, etc. Therefore, a more practical
direction is to design more efficient self-supervised
pre-training tasks and training methods according
to the capabilities of existing hardware and soft-
ware. ELECTRA (Clark et al., 2020) is a good

attempt towards this direction.

Beyond Fine-Tuning. Currently, fine-tuning is
the dominant method to transfer the knowledge
of PTMs to downstream tasks but one deficiency
is its parameter inefficiency: every downstream
task has its own fine-tuned parameters. An im-
proved solution is to fix the original parameters of
PTMs and add small fine-tunable adaption mod-
ules for specific tasks. Thus, we can use a shared
PTM to serve multiple downstream tasks. Recently,
with the emerging of GPT-3, a novel genre for
model tuning, namely prompt tuning, is getting
more and more attention. By designing, generating
and searching discrete (Petroni et al., 2019; Gao
et al., 2021) or continuous (Liu et al., 2021b; Han
et al., 2021; Lester et al., 2021) prompts and using
MLM for specific downstream tasks, these models
could (1) bridge the gap between pre-training and
fine-tuning, and thereby perform better on down-
stream tasks; (2) reduce the computational cost on
fine-tuning the tremendous amounts of parameters.
To sum up, prompt tuning is a promising way to
stimulate the linguistic and world knowledge dis-
tributed in PTMs.

Reliability. The reliability of PTMs is also becom-
ing an issue of great concern with the extensive
use of PTMs in production systems. The studies
of adversarial attacks (Li et al., 2020b,c; Zhang
et al., 2021c) against PTMs help us understand
their capabilities by fully exposing their vulnera-
bilities. Adversarial defenses (Si et al., 2020; Yao
et al., 2021; Li and Qiu, 2021) for PTMs are also
promising, which can improve the robustness of
PTMs and make them immune against adversarial
attacks. Overall, as a key component in many NLP
applications, the interpretability and reliability of
PTMs remain to be further explored, which will
help us understand how PTMs work and provide
guidance for better use and further improvement of
PTMs.

8.2 Multilingual and Multimodal
Pre-Training

Although multimodal and multilingual PTMs have
witnessed numerous advances in the last two years,
they still have the following ongoing research lines:

More Modalities. In addition to image and text,
video and audio can also be exploited for multi-
modal pre-training. The main challenge thus lies in
how to model temporal contexts involved in these
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two modalities. In particular, for large-scale pre-
training over video-text pairs, the conventional self-
supervised learning methods are not suitable due
to their high computational costs. To handle this
problem, it is important to develop more effective
and efficient self-supervised learning methods for
more complex modalities.

More Insightful Interpretation. It is still un-
known why bridging vision and language works.
For example, regardless of the advantages brought
by multimodal pre-training, does it lead to any
harm to the single modality (image or text)? If the
answer is yes, can we overcome this drawback dur-
ing multimodal pre-training? Along this research
line, the latest visualization tools for deep learning
can be exploited for the interpretation of multi-
modal pre-training.

More Downstream Applications. It is well-
known that multimodal pre-training can be applied
to image-text retrieval, image-to-text generation,
text-to-image generation and other downstream
tasks. However, it is still challenging to find a
“true” real-world application scenario for multi-
modal pre-training, since many effective engineer-
ing tricks can be leveraged instead (even with less
cost). A closer collaboration with the industry is
thus needed.

Transfer Learning. Currently, to make multi-
modal multilingual models handle different lan-
guages, data for each language is required during
pre-training. It is not flexible to add unseen lan-
guages during pre-training. Therefore, a new pre-
training framework should be explored to easily
adapt to those unseen languages. Besides, current
multimodal multilingual models are not able to pro-
cess audio data. For example, to translate English
audio to Chinese audio, we need to first transfer
English audio to English text by an extra speech
recognition system. After translation with a cross-
lingual model, we need to further transfer Chinese
text to Chinese audio by an extra text-to-speech
tool. How to directly transfer the source language
audio to the target language text or target language
audio by multimodal multilingual PTMs is also
worth exploring.

8.3 Computational Efficiency

Deep learning models have become increasingly
complicated and large (Devlin et al., 2019; Brown
et al., 2020; Kaplan et al., 2020; Fedus et al., 2021)

in the recent years. The novel requirements of
large-scale deep learning models bring severe chal-
lenges to the existing deep learning frameworks
such as TensorFlow (Abadi et al., 2016) and Py-
Torch (Paszke et al., 2019), which were designed
in the early days without initially foreseeing the
emerging requirements such as model/pipeline par-
allelism of large models (Brown et al., 2020; Huang
et al., 2019b; Wang et al., 2019). To develop more
efficient frameworks, the following directions are
helpful.

Data Movement. Developing an efficient dis-
tributed deep learning framework faces various
challenges. One has to carefully manage the data
movement between devices, which may otherwise
become the performance bottleneck (Narayanan
et al., 2019; Jiang et al., 2020a). A well-defined
parallelism strategy is needed to place and schedule
computational tasks on inter-connected devices, by
minimizing the communication cost, maximizing
the computational and memory resources, and op-
timizing the computation-communication overlap.
In the best case, this efficient parallelism strategy
can be generated automatically.

Parallelism Strategies. Particular to the choice
of parallelism strategy, data parallelism, model
parallelism, pipeline parallelism, and various hy-
brid parallelism approaches can find their best us-
age depending on the structure of neural networks
and hardware configuration (Ben-Nun and Hoe-
fler, 2019). Data parallelism is especially suitable
for deep learning models with a relatively small
set of parameters (usually less than tens of mil-
lion parameters) where near-linear speed-up can
be achieved when the back-propagation maximally
overlaps with the gradient/parameter communica-
tion (Hashemi et al., 2019; Peng et al., 2019; Jiang
et al., 2020a). Model parallelism and pipeline par-
allelism are for models with a more significant
number of parameters, which probably cannot fit
into a single device. In current practice, a user must
thoroughly consider the network structure given a
deep learning model and the inter-device commu-
nication bandwidth to decide the most appropriate
parallelism strategies or switch between different
strategies (Shazeer et al., 2018).

Large-Scale Training. Given the poor support
to model parallelism and pipeline parallelism by
existing deep learning frameworks, some emerg-
ing open-source projects develop dedicated frame-
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works for large-scale training. For example,
HugeCTR (Oldridge et al., 2020) is used for large-
scale click-through rate estimation. Megatron-
LM (Shoeybi et al., 2019; Narayanan et al., 2021)
and DeepSpeed (Rajbhandari et al., 2021, 2020)
target at training large-scale NLP PTMs. Insight-
Face (ins, 2021) trains large-scale face recognition
models. However, these frameworks are restricted
to limited application cases and cannot serve as a
general solution. Further, these approaches cannot
work together to constitute a complete solution due
to the compatibility issue.

Wrappers and Plugins. Without a mechanism to
support model parallelism and pipeline parallelism,
one has to develop various libraries dedicated to
some particular algorithms via inserting the data
routing operations by hand between computing op-
erations on top of existing frameworks. Further,
communication and computation need to be man-
ually overlapped to maximize the system through-
put. Manually programming communication op-
erations is prohibitively complicated and only can
solve problems case by case, leading to a signifi-
cant obstacle in applying parallelism strategies to
new deep learning models. If communication oper-
ations can be automatically managed transparently
to users by deep learning frameworks, more models
and applications can benefit from the distributed
training.

To support more complicated parallelism strate-
gies, many schemes are used as wrappers or plu-
gins based on some mainstream deep learning
frameworks such as TensorFlow and PyTorch.
Mesh-TensorFlow (Shazeer et al., 2018), FlexFlow
(Jia et al., 2019), OneFlow (one, 2021), Mind-
Spore (min, 2021) and GShard (Lepikhin et al.,
2021) provide APIs for developers to express a
wide range of parallel computation patterns for dif-
ferent components of deep neural models. The SBP
configuration in OneFlow could be still too com-
plex for users to set. However, directly program-
ming with communication primitives for a different
kind of parallelism is more complicated. OneFlow
transforms the manually programming to just set-
ting SBP signatures. Moreover, in OneFlow, the
user could just set the SBP signatures of a subset of
operations instead of the whole set, and leave the
rest SBP to be inferred with heuristic approaches
like GShard (Lepikhin et al., 2021), in which users
provide some initial annotations or use default an-
notations as seed, then the algorithm propagates

the sharding information to the un-annotated ten-
sors. The approach in FlexFlow (Jia et al., 2019)
can also be used here. The automatic scheduling
of parallelism strategies is the trend of distributed
training in the future.

8.4 Theoretical Foundation
In this subsection, we analyze the future directions
in a more fundamental way. In the aspect of theoret-
ical foundation, we discuss the following research
problems.

Uncertainty. One under-addressed issue with
PTMs (as well as other deep neural networks) is
that they are often over-confident in predictions,
i.e., these models do not know what they do not
know. For instance, GPT-3 can be used to an-
swer questions with promising performance on
benchmark datasets. However, if you ask a sim-
ple question like “How many eyes does my foot
have?”, GPT-3 would certainly produce an answer
like “Your foot has two eyes”, which looks counter-
intuitive. 4 Of course, the above question is not
often asked by normal human beings. It is gener-
ally a challenging task to deal with such out-of-
distribution (OOD) data in machine learning.

To address the above challenge, one promising
direction is to adopt Bayesian methods that explore
probabilistic tools to capture the uncertainty of both
data and model (also known as aleatoric uncertainty
and epistemic uncertainty respectively) (Der Ki-
ureghian and Ditlevsen, 2009) or derive some test-
ing statistics. Such uncertainty or statistics is help-
ful to detect outliers (Wang et al., 2020f). Re-
cently, much work has been done on the theory,
algorithms and programming libraries of Bayesian
deep learning, which conjoins Bayesian methods
and deep networks (e.g., see (Shi et al., 2017) for
more details). Such progress can be further ex-
tended to large-scale PTMs to properly character-
ize uncertainty and avoid over-confident outputs.
Of course, improving the computational efficiency
of Bayesian deep learning is a key factor to address
the above challenge.

Generalization and Robustness. Another impor-
tant issue with PTMs is on generalization. As an
important advancement of deep learning, it inherits
the advantages as well as challenges of deep neu-
ral networks. It has been observed that classical

4More examples of the Turing test of GPT-3 can
be found at https://lacker.io/ai/2020/07/06/
giving-gpt-3-a-turing-test.html
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learning theory is not sufficient to understand the
behavior of deep networks (Zhang et al., 2017),
thereby calling for new tools in learning theory.
As for PTMs, besides theoretical understanding of
the neural models themselves (e.g., Transformer
and BERT), new questions arise. For example, it
is important to theoretically understand the roles
of pre-training in improving the generalization of
downstream tasks. The recent work (Saunshi et al.,
2019) provides a fruitful attempt at understanding
contrastive learning with particular assumptions.
However, it is still largely open to analyze PTMs
under more realistic settings.

As we mentioned before, the adversarial robust-
ness also raises new questions. In previous work,
it was shown that a higher sample complexity is
needed in order to achieve adversarial robustness
for neural networks (Schmidt et al., 2018). Such
analysis has inspired further improvements (e.g.,
(Pang et al., 2020)). However, it is generally un-
known how large-scale PTMs can help in this as-
pect. Are there effective ways to explore PTMs as
extra data resources to improve the robustness of
downstream tasks? Also, the robustness of PTMs
themselves is an unsolved issue, as mentioned be-
fore.

8.5 Modeledge Learning

As introduced in section 7, PTMs can achieve a
surge of improvements for a wide range of NLP
tasks because they learn versatile knowledge from
large unlabeled corpora. As opposed to the knowl-
edge represented by discrete symbols, which is in-
terpretable to human beings, the knowledge stored
in PTMs is represented as real-valued vectors. For
example, given a triple hh, r , ti in a knowledge
graph, it is easy to know that the head entity h has
a relation r to the tail entity t . In contrast, you
seem to have difficulty knowing what a representa-
tion produced by a PTM means. Therefore, we can
refer to the knowledge stored in PTMs as “mod-
eledge”, which is distinguished from the discrete
symbolic knowledge formalized by human beings.

Knowledge-Aware Tasks. While the use of sym-
bolic knowledge is effective, it is time-consuming
and labor-intensive to manually organize this dis-
crete knowledge such as building various knowl-
edge bases. With the rapid advance of researches
on PTMs, there emerge various PTMs such as GPT,
BERT and BART. More and more researchers have
probed into what knowledge do PTMs learn from

the data, and why they perform so well on down-
stream tasks (Jawahar et al., 2019b; Ethayarajh,
2019). Petroni et al. (2019) state that PTMs can be
seen as knowledge bases and study how to apply
PTMs to the knowledge completion task. Etha-
yarajh (2019) also claim that PTMs would be open
knowledge graphs and propose an unsupervised
method to build knowledge graphs based on PTMs.
From all these knowledge-aware tasks, we can find
that a wealth of human knowledge is captured by
PTMs and stored in the form of modeledge. How to
stimulate the modeledge of PTMs is worth further
exploring in the future.

Modeledge Storage and Management. As exist-
ing PTMs are built on varying architectures and
may be trained with different corpora, they contain
diverse modeledge. As a result, how to store and
manage various continuous modeledge in PTMs
becomes a new challenge. There are two kinds of
straightforward ideas. The first is to pre-train a
huge model on extra-large scale data. Then, PTMs
will have the extraordinary ability to cover almost
all modeledge in existing PTMs. This method is
simple and effective while it requires extremely
high computational power and storage resources.
For example, GPT-3 uses about 175 billion param-
eters. The second is to combine multiple models
into one large model based on the mixture of ex-
perts (MoE) (Jacobs et al., 1991). For example, Fe-
dus et al. (2021) improve MoE to propose Switch
Transformers. This method is easy to contain new
models but the requirement of memory grows as
the number of models increases.

Considering that there are both similarities and
differences among existing PTMs, we have an im-
portant question that needs to be answered: is it
possible to build a universal continuous knowledge
base (UCKB) that stores modeledge from various
PTMs? The UCKB can not only store continuous
modeledge imported from existing PTMs but also
can blend different modeledge and then export the
fused modeledge to a model to make it more pow-
erful. Chen et al. (2020a) first propose the concept
of UCKB and make some preliminary explorations.
They regard neural networks as parameterized func-
tions and use knowledge distillation (Hinton et al.,
2014) to import and export modeledge. UCKB
overcomes the redundancy of model storage and
stores the modeledge of various models into a com-
mon continuous knowledge base. However, how to
design more effective architectures for the storage
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and interface of UCKB still remains challenging.

8.6 Cognitive and Knowledgeable Learning
Making PTMs more knowledgeable is an impor-
tant topic for the future of PTMs. We divide the
future development of knowledgeable PTMs into
the following three approaches:

Knowledge Augmentation. For an input text,
there is rich related external knowledge, which
can be used to augment the input. Considering
the formats of knowledge and plain text are very
different, it is important to bridge the gap between
text representations and knowledge representations
(including symbols or vectors) and use their infor-
mation uniformly as input. The solution to this
problem requires both unified model architectures
and knowledge-guided pre-training objectives.

Knowledge Support. Current model architectures
are manually designed and usually very regular.
With prior knowledge about the input, we can train
different sub-module to process different kinds of
input, which may accelerate the process of training
and inference and benefit the model efficiency. This
process is similar to human behavior where differ-
ent brain regions correspond to different activity
functions.

Knowledge Supervision. Knowledge bases store
amounts of structural data, which can be used as
a complementary source during pre-training. By
learning from both knowledge bases and large-
scale corpora, PTMs can have better language un-
derstanding and generation abilities compared to
only using plain text. Through these three direc-
tions, we hope the future PTMs can easily under-
stand the meanings beyond words and achieve bet-
ter performance on various downstream tasks.

In terms of cognitive PTMs, we believe the fol-
lowing approaches would be helpful:

Cognitive Architecture. Since neural networks
are inspired by the micro structure of the human
neural system, it is expected to see how the macro
function and organization of human cognitive sys-
tem can enlighten the design of the next generation
of intelligence system, such as the Global Work-
ing Theory (GWT). The success of CogQA and
CogLTX may provide some thoughts on this chal-
lenge.

Explicit and Controllable Reasoning. While
deep learning has achieved success in many per-
ceptive tasks, how to conduct complex decision

making and efficient multi-step reasoning is still
unsolved, which may require machines to auto-
matically plan the decision making process into a
cognitive graph and do explicit reasoning over the
factors in graphs as human do. Methods such as
InversePrompting (Zou et al., 2021) which shows
supreme ability in controlling theme-related text
generation would provide some thoughts.

Interactions of Knowledge. Though our PTMs
are getting bigger and more general, what knowl-
edge it has learned from pre-training is largely un-
explored. Moreover, since our brains are working
with the collaboration of different function zones,
it is important to see if our PTMs have shaped dif-
ferent inner function modules and how they would
interact with each other.

8.7 Applications

PTMs have been successfully applied in a wide
variety of domains and tasks. In this section, we
will highlight some of these applications.

Natural Language Generation. Many natural
language generation tasks have been dominated
by PTMs, such as GPT-2, BART, T5, UniLM and
many more. These tasks include machine transla-
tion, summarization, dialog generation, story gen-
eration, poetry generation and other long text gen-
eration. Since the prevalent trend of PTMs, the
backbone models have moved from CNNs/RNNs
to transformers or transformer-based PTMs. PTMs
have also been successfully applied to multimodal
generation. Trained on text-image parallel data,
these models have been shown strong in applica-
tions such as visual question answering, image-to-
text generation and text-to-image generation. As
large-scale PTMs have been trained on so large-
scale data, they have innate advantages for natu-
ral language generation, particularly low-resourced
natural language generation.

Dialog Systems. Many recent open-domain dia-
log systems are built upon large-scale transformer
structures. These examples include Meena (Adi-
wardana et al., 2020), Blender (Roller et al., 2021),
CDial-GPT (Wang et al., 2020e), Plato (Bao et al.,
2020) and Plato-2 (Bao et al., 2021), which are
trained on large-scale conversation data, com-
monly with the seq2seq framework. These mod-
els have shown capabilities of delivering natural
and engaging conversations, some of which have
been reported to be close to human-level perfor-
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mance (Adiwardana et al., 2020). However, dialog-
specific pre-training tasks are yet to be explored,
comparing to pre-training tasks for other applica-
tions.

Domain-Specific PTMs. When large-scale
domain-specific corpora are cheaply available, we
can train domain-specific PTMs on such data.
Some notable works include BioBERT (Lee et al.,
2020) and SciBERT (Beltagy et al., 2019), which
are trained respectively on the biological and scien-
tific literature text. These models are expected and
verified to learn more domain-specific knowledge
and language use than those trained on the general
text. Such domain expertise is usually regarded as
important for solving many domain-specific prob-
lems.

Domain Adaptation and Task Adaptation.
Large-scale PTMs learn general knowledge from
the large-scale general text, providing a good ini-
tial point to further learn domain-specific knowl-
edge by fine-tuning or other techniques. Although
PTMs are becoming larger and larger, the domain-
specific data are always limited. Therefore, domain
adaptation is becoming crucial for domain-specific
applications. It has been evident that the simple
fine-tuning of large-scale PTMs is not sufficient for
domain-specific applications (Gururangan et al.,
2020; Ke et al., 2020). The most essential reason
for this is the distribution shift: the data distribution
in a specific domain may be substantially different
from that in the general pre-training text. Another
important issue for the success of domain-specific
applications goes to task adaptation. Most often,
domain applications have a small set of labeled
data, which can empower supervised learning to
learn domain expertise more efficiently. However,
for super-large PTMs, simply fine-tuning on la-
beled data seems to be inefficient in computation,
nor effective in performance. Thus, how to bridge
the gap between pre-training and task-specific fine-
tuning becomes crucial. Moreover, efficient and
effective task-specific fine-tuning is also an impor-
tant research direction for the future application of
PTMs.

9 Conclusion

In this paper, we take a look into the history of
pre-training to indicate the core issue of PTMs, and
meanwhile reveal the crucial position of PTMs in
the AI development spectrum. Furthermore, we

comprehensively review the latest efforts towards
better PTMs, including designing effective archi-
tectures, utilizing rich contexts, improving compu-
tational efficiency, and conducting interpretation
and theoretical analysis. All these works contribute
to the recent wave of developing PTMs. Although
existing PTMs have achieved promising results, es-
pecially those large-scale PTMs showing amazing
abilities in zero/few-shot learning scenarios, how
to develop PTMs next is still an open question. The
knowledge stored in PTMs is represented as real-
valued vectors, which is quite different from the
discrete symbolic knowledge formalized by human
beings. We name this continuous and machine-
friendly knowledge “modeledge” and believe that
it is promising to capture the modeledge in a more
effective and efficient way and stimulate the mod-
eledge for specific tasks. We hope our view could
inspire more efforts in this field and advance the
development of PTMs.
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